Bibliography

Ackerman, P. L. (Ed.). (2011). Cognitive fatigue: Multidisciplinary perspectives on current research and future applications. Washington, DC: American Psychological Association.

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596

Amiez, C., & Petrides, M. (2009). Anatomical organization of the eye fields in the human and non-human primate frontal cortex. Progress in Neurobiology, 89(2), 220–230. https://doi.org/10.1016/j.pneurobio.2009.07.010

Antal, A., Bergmann, T. O., Grossman, N., Hanslmayr, S., Herrmann, C. S., Miniussi, C., … Zoefel, B. (2019). Multi-centre initiative to test for phasic online effects of tACS on behaviour that result from phasic current modulation in the brain and cannot be explained by sensory co-stimulation confounds. The tACS challenge. Retrieved from https://youtu.be/-FlYCVHx9Wg

Antal, A., & Herrmann, C. S. (2016). Transcranial Alternating Current and Random Noise Stimulation: Possible Mechanisms. Neural Plasticity, 2016, 1–12. https://doi.org/10.1155/2016/3616807

Antal, A., Terney, D., Poreisz, C., & Paulus, W. (2007). Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. European Journal of Neuroscience, 26(9), 2687–2691. https://doi.org/10.1111/j.1460-9568.2007.05896.x

Antonenko, D., Thielscher, A., Saturnino, G. B., Aydin, S., Ittermann, B., Grittner, U., & Flöel, A. (2019). Towards precise brain stimulation: Is electric field simulation related to neuromodulation? Brain Stimulation. https://doi.org/10.1016/j.brs.2019.03.072

Arasanz, C. P., Staines, W. R., & Schweizer, T. A. (2012). Isolating a cerebellar contribution to rapid visual attention using transcranial magnetic stimulation. Frontiers in Behavioral Neuroscience, 6, 55. https://doi.org/10.3389/fnbeh.2012.00055

Aust, F., & Barth, M. (2018). papaja: Create APA manuscripts with R Markdown. Retrieved from https://github.com/crsh/papaja

Axelrod, V., Rees, G., Lavidor, M., & Bar, M. (2015). Increasing propensity to mind-wander with transcranial direct current stimulation. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3314–3319. https://doi.org/10.1073/pnas.1421435112

Baird, B., Smallwood, J., Lutz, A., & Schooler, J. W. (2014). The decoupled mind: Mind-wandering disrupts cortical phase-locking to perceptual events. Journal of Cognitive Neuroscience, 26(11), 2596–2607. https://doi.org/10.1162/jocn_a_00656

Bakeman, R. (2005). Recommended effect size statistics for repeated measures designs. Behavior Research Methods, 37(3), 379–384. https://doi.org/10.3758/BF03192707

Baker, M. (2015). 1,500 scientists lift the lid on reproducibility. Nature, 533, 52–454.

Ball, K. L., Lane, A. R., Smith, D. T., & Ellison, A. (2013). Site-dependent effects of tDCS uncover dissociations in the communication network underlying the processing of visual search. Brain Stimulation, 6, 959–965. https://doi.org/10.1016/j.brs.2013.06.001

Bang, D.-H., & Bong, S.-Y. (2015). Effect of combination of transcranial direct current stimulation and feedback training on visuospatial neglect in patients with subacute stroke: a pilot randomized controlled trial. Journal of Physical Therapy Science, 27(9), 2759–2761. https://doi.org/10.1589/jpts.27.2759

Barbato, G., Ficca, G., Muscettola, G., Fichele, M., Beatrice, M., & Rinaldi, F. (2000). Diurnal variation in spontaneous eye-blink rate. Psychiatry Research, 93(2), 145–151. https://doi.org/10.1016/S0165-1781(00)00108-6

Bardi, L., Kanai, R., Mapelli, D., & Walsh, V. (2013). Direct current stimulation (tDCS) reveals parietal asymmetry in local/global and salience-based selection. Cortex, 49(3), 850–860. https://doi.org/10.1016/j.cortex.2012.04.016

Barnett, J. H., Scoriels, L., & Munafò, M. R. (2008). Meta-Analysis of the Cognitive Effects of the Catechol-O-Methyltransferase Gene Val158/108Met Polymorphism. Biological Psychiatry, 64(2), 137–144. https://doi.org/10.1016/j.biopsych.2008.01.005

Bartlett, F. C. (1943). Fatigue following highly skilled work. Proceedings of the Royal Society of London. Series B, Biological Sciences, 131(864), 247–257.

Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M.-F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. The Journal of Physiologyhysiology, 591(Pt 7), 1987–2000. https://doi.org/10.1113/jphysiol.2012.249730

Benwell, C. S., Harvey, M., Gardner, S., & Thut, G. (2013). Stimulus- and state-dependence of systematic bias in spatial attention: Additive effects of stimulus-size and time-on-task. Cortex, 49(3), 827–836. https://doi.org/10.1016/j.cortex.2011.12.007

Benwell, C. S., Keitel, C., Harvey, M., Gross, J., & Thut, G. (2018). Trial-by-trial co-variation of pre-stimulus EEG alpha power and visuospatial bias reflects a mixture of stochastic and deterministic effects. European Journal of Neuroscience, 48(7), 2566–2584. https://doi.org/10.1111/ejn.13688

Benwell, C. S., Learmonth, G., Miniussi, C., Harvey, M., & Thut, G. (2015). Non-linear effects of transcranial direct current stimulation as a function of individual baseline performance: Evidence from biparietal tDCS influence on lateralized attention bias. Cortex, 69, 152–165. https://doi.org/10.1016/j.cortex.2015.05.007

Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A., & Siebner, H. R. (2016). Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage, 140, 4–19. https://doi.org/10.1016/j.neuroimage.2016.02.012

Berker, A. O. de, Bikson, M., & Bestmann, S. (2013). Predicting the behavioral impact of transcranial direct current stimulation: issues and limitations. Frontiers in Human Neuroscience, 7, 613. https://doi.org/10.3389/fnhum.2013.00613

Bestmann, S., Berker, A. O. de, & Bonaiuto, J. (2015). Understanding the behavioural consequences of noninvasive brain stimulation. Trends in Cognitive Sciences, 19(1), 13–20. https://doi.org/10.1016/j.tics.2014.10.003

Bestmann, S., & Walsh, V. (2017). Transcranial electrical stimulation. Current Biology, 27(23), R1258–R1262. https://doi.org/10.1016/j.cub.2017.11.001

Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., … Woods, A. J. (2016). Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimulation, 9(5), 641–661. https://doi.org/10.1016/j.brs.2016.06.004

Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., & Jefferys, J. G. (2004). Effect of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. Journal of Physiology, 557(1), 175–190. https://doi.org/10.1113/jphysiol.2003.055772

Bikson, M., Paulus, W., Esmaeilpour, Z., Kronberg, G., & Nitsche, M. A. (2019). Mechanisms of acute and after effects of transcranial direct current stimulation. In H. Knotkova, M. A. Nitsche, M. Bikson, & A. J. Woods (Eds.), Practical guide to transcranial direct current stimulation (pp. 81–113). https://doi.org/10.1007/978-3-319-95948-1

Bikson, M., Rahman, A., & Datta, A. (2012). Computational models of transcranial direct current stimulation. Clinical EEG and Neuroscience, 43(3), 176–183. https://doi.org/10.1177/1550059412445138

Bindman, L. J., Lippold, O. C. J., & Redfearn, J. W. T. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after effects. Journal of Physiology, 172, 369–382. https://doi.org/10.1113/jphysiol.1964.sp007425

Bishop, D. (2019). Rein in the four horsemen of irreproducibility. Nature, 568(7753), 435–435. https://doi.org/10.1038/d41586-019-01307-2

Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: an update. Trends in Neurosciences, 30(5), 194–202. https://doi.org/10.1016/j.tins.2007.03.006

Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327, 307–310. https://doi.org/10.1016/S0140-6736(86)90837-8

Blanke, O., Spinelli, L., Thut, G., Michel, C. M., Perrig, S., Landis, T., & Seeck, M. (2000). Location of the human frontal eye field as defined by electrical cortical stimulation - anatomical functional and electrophysiological characteristics. NeuroReport, 11(9), 1907–1913.

Blumberg, E. J., Peterson, M. S., & Parasuraman, R. (2015). Enhancing multiple object tracking performance with noninvasive brain stimulation: a causal role for the anterior intraparietal sulcus. Frontiers in Systems Neuroscience, 9, 3. https://doi.org/10.3389/fnsys.2015.00003

Boayue, N. M., Csifcsák, G., Aslaksen, P., Turi, Z., Antal, A., Groot, J., … Mittner, M. (2019). Increasing propensity to mind-wander by transcranial direct current stimulation? A registered report. European Journal of Neuroscience, 1–26. https://doi.org/10.1111/ejn.14347

Boksem, M. A., Meijman, T. F., & Lorist, M. M. (2005). Effects of mental fatigue on attention: an ERP study. Cognitive Brain Research, 25(1), 107–116. https://doi.org/10.1016/j.cogbrainres.2005.04.011

Boksem, M. A., Meijman, T. F., & Lorist, M. M. (2006). Mental fatigue, motivation and action monitoring. Biological Psychology, 72(2), 123–132. https://doi.org/10.1016/j.biopsycho.2005.08.007

Boksem, M. A., & Tops, M. (2008). Mental fatigue: costs and benefits. Brain Research Reviews, 59(1), 125–139. https://doi.org/10.1016/j.brainresrev.2008.07.001

Bolognini, N., Fregni, F., Casati, C., Olgiati, E., & Vallar, G. (2010a). Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Research, 1349, 76–89. https://doi.org/10.1016/j.brainres.2010.06.053

Bolognini, N., Olgiati, E., Rossetti, A., & Maravita, A. (2010b). Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. European Journal of Neuroscience, 31(10), 1800–1806. https://doi.org/10.1111/j.1460-9568.2010.07211.x

Bonnefond, A., Doignon-Camus, N., Hoeft, A., & Dufour, A. (2011). Impact of motivation on cognitive control in the context of vigilance lowering: An ERP study. Brain and Cognition, 77(3), 464–471. https://doi.org/10.1016/j.bandc.2011.08.010

Bonnefond, A., Doignon-Camus, N., Touzalin-Chretien, P., & Dufour, A. (2010). Vigilance and intrinsic maintenance of alert state: An ERP study. Behavioural Brain Research, 211(2), 185–190. https://doi.org/10.1016/j.bbr.2010.03.030

Border, R., Johnson, E. C., Evans, L. M., Smolen, A., Berley, N., Sullivan, P. F., & Keller, M. C. (2019). No Support for Historical Candidate Gene or Candidate Gene-by-Interaction Hypotheses for Major Depression Across Multiple Large Samples. American Journal of Psychiatry. https://doi.org/10.1176/appi.ajp.2018.18070881

Bowers, D., & Heilman, K. M. (1980). Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia, 18(4-5), 491–498. https://doi.org/10.1016/0028-3932(80)90151-7

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.

Brand, A., Allen, L., Altman, M., Hlava, M., & Scott, J. (2015). Beyond authorship: attribution, contribution, collaboration, and credit. Learned Publishing, 28(2), 151–155. https://doi.org/10.1087/20150211

Brem, A.-K., Fried, P. J., Horvath, J. C., Robertson, E. M., & Pascual-Leone, A. (2014a). Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition? NeuroImage, 85, 1058–1068. https://doi.org/10.1016/j.neuroimage.2013.07.038

Brem, A.-K., Unterburger, E., Speight, I., & Jäncke, L. (2014b). Treatment of visuospatial neglect with biparietal tDCS and cognitive training: a single-case study. Frontiers in Systems Neuroscience, 8, 180. https://doi.org/10.3389/fnsys.2014.00180

Brignani, D., Ruzzoli, M., Mauri, P., & Miniussi, C. (2013). Is transcranial alternating current stimulation effective in modulating brain oscillations? PLOS ONE, 8(2), e56589. https://doi.org/10.1371/journal.pone.0056589

Brink, R. L. van den, Murphy, P. R., & Nieuwenhuis, S. (2016). Pupil diameter tracks lapses of attention. PLoS ONE, 11(10), 1–16. https://doi.org/10.1371/journal.pone.0165274

Brodeur, A., Lé, M., Sangnier, M., & Zylberberg, Y. (2016). Star Wars: The Empirics Strike Back. American Economic Journal: Applied Economics, 8(1), 1–32. https://doi.org/10.1257/app.20150044

Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science (New York, N.Y.), 315(5820), 1860–1862. https://doi.org/10.1126/science.1138071

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376. https://doi.org/10.1038/nrn3475

Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. https://doi.org/10.1126/science.1099745

Caffier, P. P., Erdmann, U., & Ullsperger, P. (2003). Experimental evaluation of eye-blink parameters as a drowsiness measure. European Journal of Applied Physiology, 89(3-4), 319–325. https://doi.org/10.1007/s00421-003-0807-5

Cajochen, C., Brunner, D. P., Krauchi, K., Graw, P., & Wirz-Justice, A. (1995). Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep, 18(10), 890–894. https://doi.org/10.1093/sleep/18.10.890

Callan, D. E., Falcone, B., Wada, A., & Parasuraman, R. (2016). Simultaneous tDCS-fMRI Identifies Resting State Networks Correlated with Visual Search Enhancement. Frontiers in Human Neuroscience, 10, 72. https://doi.org/10.3389/fnhum.2016.00072

Camerer, C. F., Dreber, A., Holzmeister, F., Ho, T. H., Huber, J., Johannesson, M., … Wu, H. (2018). Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nature Human Behaviour, 2(9), 637–644. https://doi.org/10.1038/s41562-018-0399-z

Capotosto, P., Babiloni, C., Romani, G. L., & Corbetta, M. (2009). Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. Journal of Neuroscience, 29(18), 5863–5872. https://doi.org/10.1523/JNEUROSCI.0539-09.2009

Carrasco, M. (2011). Visual attention: the past 25 years. Vision Research, 51(13), 1484–1525. https://doi.org/10.1016/j.visres.2011.04.012

Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7(3), 308–313. https://doi.org/10.1038/nn1194

Carter, E. C., Kofler, L. M., Forster, D. E., & McCullough, M. E. (2015). A series of meta-analytic tests of the depletion effect: Self-control does not seem to rely on a limited resource. Journal of Experimental Psychology: General, 144(4), 796–815. https://doi.org/10.1037/xge0000083

Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … Poulton, R. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389. https://doi.org/10.1126/science.1083968

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421. https://doi.org/10.1016/j.tics.2014.04.012

Chambers, C. D., Feredoes, E., Muthukumaraswamy, S. D., & Etchells, P. J. (2014). Instead of "playing the game" it is time to change the rules: Registered Reports at AIMS Neuroscience and beyond. AIMS Neuroscience, 1(1), 4–17. https://doi.org/10.3934/Neuroscience2014.1.4

Champely, S. (2018). Pwr: Basic functions for power analysis. Retrieved from https://CRAN.R-project.org/package=pwr

Chen, P. L., & Machado, L. (2017). Developing clinically practical transcranial direct current stimulation protocols to improve saccadic eye movement control. Journal of Eye Movement Research, 10(3), 1–13. https://doi.org/10.16910/jemr.10.3.5

Chew, T., Ho, K.-A., & Loo, C. K. (2015). Inter- and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimulation, 8, 1130–1137. https://doi.org/10.1016/j.brs.2015.07.031

Chica, A. B., Martín-Arévalo, E., Botta, F., & Lupiáñez, J. (2014). The Spatial Orienting paradigm: how to design and interpret spatial attention experiments. Neuroscience and Biobehavioral Reviews, 40, 35–51. https://doi.org/10.1016/j.neubiorev.2014.01.002

Christie, S. T., & Schrater, P. (2015). Cognitive cost as dynamic resource allocation. Frontiers in Neuroscience, 9, 289. https://doi.org/10.3389/fnins.2015.00289

Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A Taxonomy of External and Internal Attention. Annual Review of Psychology, 62(1), 73–101. https://doi.org/10.1146/annurev.psych.093008.100427

Clark, A., & Chalmers, D. (1998). The Extended Mind. Analysis, 58(1), 7–19. Retrieved from https://www.jstor.org/stable/3328150

Clark, V. P., Coffman, B. A., Mayer, A. R., Weisend, M. P., Lane, T. D. R., Calhoun, V. D., … Wassermann, E. M. (2012). TDCS guided using fMRI significantly accelerates learning to identify concealed objects. NeuroImage, 59(1), 117–128. https://doi.org/10.1016/j.neuroimage.2010.11.036

Clark, V. P., Coffman, B. A., Trumbo, M. C., & Gasparovic, C. (2011). Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: A 1H magnetic resonance spectroscopy study. Neuroscience Letters, 500(1), 67–71. https://doi.org/10.1016/j.neulet.2011.05.244

Clark, V. P., & Parasuraman, R. (2014). Neuroenhancement: Enhancing brain and mind in health and in disease. NeuroImage, 85, 889–894. https://doi.org/10.1016/j.neuroimage.2013.08.071

Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2015). The roles of cortical oscillations in sustained attention. Trends in Cognitive Sciences, 19(4), 188–195. https://doi.org/10.1016/j.tics.2015.02.004

Coffman, B. A., Clark, V. P., & Parasuraman, R. (2014). Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. NeuroImage, 85 Pt 3, 895–908. https://doi.org/10.1016/j.neuroimage.2013.07.083

Coffman, B. A., Trumbo, M. C., & Clark, V. P. (2012). Enhancement of object detection with transcranial direct current stimulation is associated with increased attention. BMC Neuroscience, 13, 108. https://doi.org/10.1186/1471-2202-13-108

Cohen, J. D., Aston-Jones, G., & Gilzenrat, M. S. (2004). A Systems-Level Perspective on Attention and Cognitive Control: Guided Activation, Adaptive Gating, Conflict Monitoring, and Exploitation versus Exploration. In M. I. Posner (Ed.), Cognitive neuroscience of attention (pp. 71–90). New York, NY, US: The Guilford Press.

Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. MIT Press.

Cohen, M. X. (2017). Where Does EEG Come From and What Does It Mean? Trends in Neurosciences, 40(4), 208–218. https://doi.org/10.1016/j.tins.2017.02.004

Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752–2763. https://doi.org/10.1152/jn.00479.2013

Cohen Kadosh, R. (Ed.). (2014). The Stimulated Brain: Cognitive Enhancement Using Non-Invasive Brain Stimulation. London, UK: Academic Press.

Cohen Kadosh, R., Levy, N., O’Shea, J., Shea, N., & Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Current Biology, 22(4), R108–11. https://doi.org/10.1016/j.cub.2012.01.013

Colzato, L. S., Slagter, H. A., Spapé, M. M. A., & Hommel, B. (2008). Blinks of the eye predict blinks of the mind. Neuropsychologia, 46(13), 3179–3183. https://doi.org/10.1016/j.neuropsychologia.2008.07.006

Colzato, L. S., Slagter, H., Rover, M. D., & Hommel, B. (2011). Dopamine and the Management of Attentional Resources: Genetic Markers of Striatal D2 Dopamine Predict Individual Differences in the Attentional Blink. Journal of Cognitive Neuroscience, 23(11), 3576–3585. https://doi.org/10.1162/jocn_a_00049

Cools, R., & D’Esposito, M. (2011). Inverted-U–Shaped Dopamine Actions on Human Working Memory and Cognitive Control. Biological Psychiatry, 69(12), e113–e125. https://doi.org/10.1016/j.biopsych.2011.03.028

Cooper, A. C., Humphreys, G. W., Hulleman, J., Praamstra, P., & Georgeson, M. (2004). Transcranial magnetic stimulation to right parietal cortex modifies the attentional blink. Experimental Brain Research, 155(1), 24–29. https://doi.org/10.1007/s00221-003-1697-9

Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z., & Sapir, A. (2005). Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neuroscience, 8(11), 1603–1610. https://doi.org/10.1038/nn1574

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755

Cosman, J. D., Atreya, P. V., & Woodman, G. F. (2015). Transient reduction of visual distraction following electrical stimulation of the prefrontal cortex. Cognition, 145, 73–76. https://doi.org/10.1016/j.cognition.2015.08.010

Cousineau, D. (2005). Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson’s method. Tutorial in Quantitative Methods for Psychology, 1(1), 42–45. https://doi.org/10.20982/tqmp.01.1.p042

Creutzfeldt, O. D., Fromm, G. H., & Kapp, H. (1962). Influence of Transcortical d-c Currents on Cortical Neuronal Activity. Experimental Neurology, 5, 436–452.

Daitch, A. L., Sharma, M., Roland, J. L., Astafiev, S. V., Bundy, D. T., Gaona, C. M., … Corbetta, M. (2013). Frequency-specific mechanism links human brain networks for spatial attention. Proceedings of the National Academy of Sciences, 110(48), 19585–19590. https://doi.org/10.1073/pnas.1307947110

Dale, G., & Arnell, K. M. (2013). How reliable is the attentional blink? Examining the relationships within and between attentional blink tasks over time. Psychological Research, 77(2), 99–105. https://doi.org/10.1007/s00426-011-0403-y

Dale, G., Dux, P. E., & Arnell, K. M. (2013). Individual differences within and across attentional blink tasks revisited. Attention, Perception & Psychophysics, 75(3), 456–467. https://doi.org/10.3758/s13414-012-0415-8

Dang, L. C., Samanez-Larkin, G. R., Castrellon, J. J., Perkins, S. F., Cowan, R. L., Newhouse, P. A., & Zald, D. H. (2017). Spontaneous Eye Blink Rate (EBR) Is Uncorrelated with Dopamine D2 Receptor Availability and Unmodulated by Dopamine Agonism in Healthy Adults. eNeuro, 4(5), ENEURO.0211–17.2017. https://doi.org/10.1523/eneuro.0211-17.2017

Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201–207.e1. https://doi.org/10.1016/j.brs.2009.03.005

Dayan, E., Censor, N., Buch, E. R., Sandrini, M., & Cohen, L. G. (2013). Noninvasive brain stimulation: from physiology to network dynamics and back. Nature Neuroscience, 16(7), 838–844. https://doi.org/10.1038/nn.3422

Dedoncker, J., Brunoni, A. R., Baeken, C., & Vanderhasselt, M. A. (2016). A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters. Brain Stimulation, 9(4), 501–517. https://doi.org/10.1016/j.brs.2016.04.006

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Demiralp, T., & Başar, E. (1992). Theta rhythmicities following expected visual and auditory targets. International Journal of Psychophysiology, 13(2), 147–160.

Dennison, O., Gao, J., Lim, L. W., Stagg, C. J., & Aquili, L. (2018). Catecholaminergic modulation of indices of cognitive flexibility: A pharmaco-tDCS study. Brain Stimulation, 12(2), 290–295. https://doi.org/https://doi.org/10.1016/j.brs.2018.12.001

Desimone, R., & Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18, 193–222.

Diedenhofen, B., & Musch, J. (2015). Cocor: A comprehensive solution for the statistical comparison of correlations. PLoS ONE, 10(4), e0121945. https://doi.org/10.1371/journal.pone.0121945

Diepen, R. M. van, Foxe, J. J., & Mazaheri, A. (2019). The functional role of alpha-band activity in attentional processing: the current zeitgeist and future outlook. Current Opinion in Psychology, 29, 229–238. https://doi.org/10.1016/j.copsyc.2019.03.015

Diepen, R. M. van, & Mazaheri, A. (2018). The caveats of observing inter-trial phase-coherence in cognitive neuroscience. Scientific Reports, 8, 2990. https://doi.org/10.1038/s41598-018-20423-z

Doughty, M. J., & Naase, T. (2006). Further analysis of the human spontaneous eye blink rate by a cluster analysis-based approach to categorize individuals with ’normal’ versus ’frequent’ eye blink activity. Eye and Contact Lens, 32(6), 294–299. https://doi.org/10.1097/01.icl.0000224359.32709.4d

Drapeau, C., & Carrier, J. (2004). Fluctuation of waking electroencephalogram and subjective alertness during a 25-Hour sleep-deprivation episode in young and middle-aged subjects. Sleep, 27, 55–60. https://doi.org/10.1093/sleep/27.1.55

Driel, J. van, Sligte, I. G., Linders, J., Elport, D., & Cohen, M. X. (2015). Frequency band-specific electrical brain stimulation modulates cognitive control processes. PLoS ONE, 10(9), 1–15. https://doi.org/10.1371/journal.pone.0138984

Dubljević, V., Saigle, V., & Racine, E. (2014). The rising tide of tDCS in the media and academic literature. Neuron, 82(4), 731–736. https://doi.org/10.1016/j.neuron.2014.05.003

Duecker, F., Graaf, T. A. de, & Sack, A. T. (2014). Thinking caps for everyone? The role of neuro-enhancement by non-invasive brain stimulation in neuroscience and beyond. Frontiers in Systems Neuroscience, 8(April), 71. https://doi.org/10.3389/fnsys.2014.00071

Duecker, F., & Sack, A. T. (2015). The hybrid model of attentional control: New insights into hemispheric asymmetries inferred from TMS research. Neuropsychologia, 74, 21–29. https://doi.org/10.1016/j.neuropsychologia.2014.11.023

Dufour, A., Touzalin, P., & Candas, V. (2007). Time-on-task effect in pseudoneglect. Experimental Brain Research, 176(3), 532–537. https://doi.org/10.1007/s00221-006-0810-2

Dux, P. E., & Marois, R. (2008). Distractor inhibition predicts individual differences in the attentional blink. PLOS ONE, 3(10), e3330. https://doi.org/10.1371/journal.pone.0003330

Dux, P. E., & Marois, R. (2009). The attentional blink: A review of data and theory. Attention, Perception, and Psychophysics, 71(8), 1683–1700. https://doi.org/10.3758/APP.71.8.1683

Dyke, K., Kim, S., Jackson, G. M., & Jackson, S. R. (2016). Intra-Subject Consistency and Reliability of Response Following 2 mA Transcranial Direct Current Stimulation. Brain Stimulation, 9(6), 819–825. https://doi.org/10.1016/j.brs.2016.06.052

Eason, R. G., Harter, M., & White, C. (1969). Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiology & Behavior, 4(3), 283–289. https://doi.org/10.1016/0031-9384(69)90176-0

Eidelman-Rothman, M., Ben-Simon, E., Freche, D., Keil, A., Hendler, T., & Levit-Binnun, N. (2018). Decreased inter trial phase coherence of steady-state visual evoked responses in sleep deprivation. bioRxiv, 471730. https://doi.org/10.1101/471730

Ellison, A., Ball, K. L., Lane, A. R., & Ellison, A. (2017). The Behavioral Effects of tDCS on Visual Search Performance Are Not Influenced by the Location of the Reference Electrode. Frontiers in Neuroscience, 11, 520. https://doi.org/10.3389/fnins.2017.00520

Ellison, A., Ball, K. L., Moseley, P., Dowsett, J., Smith, D. T., Weis, S., & Lane, A. R. (2014). Functional interaction between right parietal and bilateral frontal cortices during visual search tasks revealed using functional magnetic imaging and transcranial direct current stimulation. PLOS ONE, 9(4), e93767. https://doi.org/10.1371/journal.pone.0093767

Esterman, M., Grosso, M., Liu, G., Mitko, A., Morris, R., & DeGutis, J. (2016). Anticipation of monetary reward can attenuate the vigilance decrement. PLOS ONE, 11(7), e0159741. https://doi.org/10.1371/journal.pone.0159741

Esterman, M., Noonan, S. K., Rosenberg, M., & Degutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23(11), 2712–2723. https://doi.org/10.1093/cercor/bhs261

Esterman, M., Reagan, A., Liu, G., Turner, C., & DeGutis, J. (2014). Reward reveals dissociable aspects of sustained attention. Journal of Experimental Psychology: General, 143(6), 2287–2295. https://doi.org/10.1037/xge0000019

Esterman, M., Thai, M., Okabe, H., DeGutis, J., Saad, E., Laganiere, S. E., & Halko, M. A. (2017). Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. NeuroImage, 156(May), 190–198. https://doi.org/10.1016/j.neuroimage.2017.05.011

Es, D. van, Theeuwes, J., & Knapen, T. (2017). Spatial sampling in human visual cortex is modulated by both spatial and feature-based attention. bioRxiv, 147223, 1–67. https://doi.org/10.1101/147223.

Faber, L. G., Maurits, N. M., & Lorist, M. M. (2012). Mental fatigue affects visual selective attention. PLoS ONE, 7(10), 1–10. https://doi.org/10.1371/journal.pone.0048073

Falcone, B., Coffman, B. A., Clark, V. P., & Parasuraman, R. (2012). Transcranial Direct Current Stimulation Augments Perceptual Sensitivity and 24-Hour Retention in a Complex Threat Detection Task. PLoS ONE, 7(4), e34993. https://doi.org/10.1371/journal.pone.0034993

Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347. https://doi.org/10.1162/089892902317361886

Fanelli, D. (2012). Negative results are disappearing from most disciplines and countries. Scientometrics, 90(3), 891–904. https://doi.org/10.1007/s11192-011-0494-7

Ferguson, C. J., & Heene, M. (2012). A vast graveyard of undead theories: Publication bias and psychological science’s aversion to the null. Perspectives on Psychological Science, 7(6), 555–561. https://doi.org/10.1177/1745691612459059

Ferrier, D. (1873). The localization of function in the brain. Proceedings of the Royal Society of London, 22, 228–232.

Fertonani, A., & Miniussi, C. (2017). Transcranial Electrical Stimulation: What We Know and Do Not Know About Mechanisms. The Neuroscientist, 23(2), 109–123. https://doi.org/10.1177/1073858416631966

Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 37(12), 1–12. https://doi.org/10.1016/j.tins.2014.08.003

Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2015). Dissociable effects of anodal and cathodal tDCS reveal distinct functional roles for right parietal cortex in the detection of single and competing stimuli. Neuropsychologia, 74, 120–126. https://doi.org/10.1016/j.neuropsychologia.2015.01.038

Filmer, H. L., Ehrhardt, S., Bollmann, S., Mattingley, J. B., & Dux, P. E. (2019). Accounting for individual differences in the response to tDCS with baseline levels of neurochemical excitability. Cortex, 115, 324–334. https://doi.org/10.1016/j.cortex.2019.02.012

Filmer, H. L., Varghese, E., Hawkins, G. E., Mattingley, J. B., & Dux, P. E. (2016). Improvements in Attention and Decision-Making Following Combined Behavioral Training and Brain Stimulation. Cerebral Cortex, 27(7), 3675–3682. https://doi.org/10.1093/cercor/bhw189

Fletcher, T. D. (2010). Psychometric: Applied psychometric theory. Retrieved from https://CRAN.R-project.org/package=psychometric

Folloni, D., Verhagen, L., Mars, R. B., Fouragnan, E., Constans, C., Aubry, J.-F., … Sallet, J. (2019). Manipulation of Subcortical and Deep Cortical Activity in the Primate Brain Using Transcranial Focused Ultrasound Stimulation. Neuron, 1109–1116. https://doi.org/10.1016/j.neuron.2019.01.019

Fonteneau, C., Mondino, M., Arns, M., Baeken, C., Bikson, M., Brunoni, A. R., … Brunelin, J. (2019). Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimulation, 12(3), 668–673. https://doi.org/10.1016/j.brs.2018.12.977

Fonteneau, C., Redoute, J., Haesebaert, F., Le Bars, D., Costes, N., Suaud-Chagny, M.-F., & Brunelin, J. (2018). Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human. Cerebral Cortex, 28(7), 2636–2646. https://doi.org/10.1093/cercor/bhy093

Fortenbaugh, F. C., Degutis, J., & Esterman, M. (2017). Recent theoretical, neural, and clinical advances in sustained attention research. Annals of the New York Academy of Sciences, 1396, 70–91. https://doi.org/10.1111/nyas.13318

Franco, A., Malhotra, N., & Simonovits, G. (2014). Publication bias in the social sciences: Unlocking the file drawer. Science, 345(6203), 1502–1505. https://doi.org/10.1126/science.1255484

Fresnoza, S., Paulus, W., Nitsche, M. A., & Kuo, M.-F. (2014). Nonlinear Dose-Dependent Impact of D1 Receptor Activation on Motor Cortex Plasticity in Humans. Journal of Neuroscience, 34(7), 2744–2753. https://doi.org/10.1523/JNEUROSCI.3655-13.2014

Freunberger, R., Klimesch, W., Doppelmayr, M., & Höller, Y. (2007). Visual P2 component is related to theta phase-locking. Neuroscience Letters, 426(3), 181–186. https://doi.org/10.1016/j.neulet.2007.08.062

Gardner, R., & Neufeld, R. (1987). Use of the simple change score in correlational analyses. Educational and Psychological Measurement, 47(4), 849–864. https://doi.org/10.1177/0013164487474001

Gebodh, N., Esmaeilpour, Z., Bikson, M., Adair, D., Fregni, F., & Schestattsky, P. (2019). Transcranial direct current stimulation among technologies for low-intensity transcranial electrical stimulation: classification, history, and terminology. In H. Knotkova, M. A. Nitsche, M. Bikson, & A. J. Woods (Eds.), Practical guide to transcranial direct current stimulation (pp. 3–43). https://doi.org/10.1007/978-3-319-95948-1_1

Gergelyfi, M., Jacob, B., Olivier, E., & Zénon, A. (2015). Dissociation between mental fatigue and motivational state during prolonged mental activity. Frontiers in Behavioral Neuroscience, 9, 176. https://doi.org/10.3389/fnbeh.2015.00176

Gibbs, A. A., Naudts, K. H., Spencer, E. P., & David, A. S. (2007). The role of dopamine in attentional and memory biases for emotional information. American Journal of Psychiatry, 164(10), 1603–1609. https://doi.org/10.1176/appi.ajp.2007.06081241

Giglia, G., Mattaliano, P., Puma, a, Rizzo, S., Fierro, B., & Brighina, F. (2011). Neglect-like effects induced by tDCS modulation of posterior parietal cortices in healthy subjects. Brain Stimulation, 4(4), 294–299. https://doi.org/10.1016/j.brs.2011.01.003

Gillespie, N. A., Whitfield, J. B., Williams, B., Heath, A. C., & Martin, N. G. (2005). The relationship between stressful life events, the serotonin transporter (5-HTTLPR) genotype and major depression. Psychological Medicine, 35(1), 101–111. https://doi.org/10.1017/S0033291704002727

Goh, J. X., Hall, J. A., & Rosenthal, R. (2016). Mini Meta-Analysis of Your Own Studies: Some Arguments on Why and a Primer on How. Social and Personality Psychology Compass, 10(10), 535–549. https://doi.org/10.1111/spc3.12267

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., … Poldrack, R. A. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3, 160044. https://doi.org/10.1038/sdata.2016.44

Graaf, T. A. de, & Sack, A. T. (2018). When and how to interpret null Results in NIBS: A taxonomy based on prior expectations and experimental design. Frontiers in Neuroscience, 12, 915. https://doi.org/10.3389/fnins.2018.00915

Green, C. S., & Bavelier, D. (2012). Learning, attentional control, and action video games. Current Biology, 22(6), R197–R206. https://doi.org/10.1016/j.cub.2012.02.012

Greinacher, R., Buhôt, L., Möller, L., & Learmonth, G. (2019). The Time Course of Ineffective Sham Blinding During Low-Intensity (1mA) Transcranial Direct Current Stimulation. European Journal of Neuroscience, 1–9. https://doi.org/10.1111/ejn.14497

Grent-’t-Jong, T., & Woldorff, M. G. (2007). Timing and sequence of brain activity in top-down control of visual-spatial attention. PLoS Biology, 5(1), e12. https://doi.org/10.1371/journal.pbio.0050012

Griffin, D., Murray, S., & Gonzalez, R. (1999). Difference score correlations in relationship research: A conceptual primer. Personal Relationships, 6(4), 505–518. https://doi.org/10.1111/j.1475-6811.1999.tb00206.x

Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate. Journal of Statistical Software, 40(3), 1–25. Retrieved from http://www.jstatsoft.org/v40/i03/

Grosbras, M.-H., Laird, A. R., & Paus, T. (2005). Cortical regions involved in eye movements, shifts of attention, and gaze perception. Human Brain Mapping, 25(1), 140–154. https://doi.org/10.1002/hbm.20145

Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S. B., Rudenko, A., Suk, H. J., … Boyden, E. S. (2017). Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell, 169(6), 1029–1041.e16. https://doi.org/10.1016/j.cell.2017.05.024

Grossman, P., Alekseichuk, I., Lara, G. de, Paneri, K., Kunz, P., Turi, Z., … Antal, A. (2018). transcranial Direct Current Stimulation Studies Open Database (tDCS-OD). bioRxiv, 369215. https://doi.org/10.1101/369215

Guleyupoglu, B., Schestatsky, P., Edwards, D., Fregni, F., & Bikson, M. (2013). Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. Journal of Neuroscience Methods, 219(2), 297–311. https://doi.org/10.1016/j.jneumeth.2013.07.016

Hagger, M. S., Chatzisarantis, N. L., Alberts, H., Anggono, C. O., Batailler, C., Birt, A. R., … Zwienenberg, M. (2016). A Multilab Preregistered Replication of the Ego-Depletion Effect. Perspectives on Psychological Science, 11(4), 546–573. https://doi.org/10.1177/1745691616652873

Hancock, P. A. (2013). In search of vigilance: The problem of iatrogenically created psychological phenomena. The American Psychologist, 68(2), 97–109. https://doi.org/10.1037/a0030214

Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430. https://doi.org/10.1126/science.274.5286.427

Harms, C., & Lakens, D. (2018). Making ’null effects’ informative: statistical techniques and inferential frameworks. Journal of Clinical and Translational Research, 3, 382–393. https://doi.org/10.18053/jctres.03.2017s2.007

Harrell, F. E., & Davis, C. E. (1982). A New Distribution-Free Quantile Estimator and. Biometrika, 69(3), 635–640. https://doi.org/10.2307/2335999

Harty, S., Sella, F., & Cohen Kadosh, R. (2017). Transcranial Electrical Stimulation and Behavioral Change: The Intermediary Influence of the Brain. Frontiers in Human Neuroscience, 11, 112. https://doi.org/10.3389/fnhum.2017.00112

Händel, B. F., Haarmeier, T., & Jensen, O. (2011). Alpha oscillations correlate with the successful inhibition of unattended stimuli. Journal of Cognitive Neuroscience, 23(9), 2494–2502. https://doi.org/10.1162/jocn.2010.21557

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 1166–1186. https://doi.org/10.3758/s13428-017-0935-1

Heilman, K. M., Watson, R., & Valenstein, E. (2012). Neglect and Related Disorders. In K. Heilman & E. Valenstein (Eds.), Clinical neurophysiology (5th ed., pp. 296–348). New York: Oxford University Press.

Helton, W. S., & Russell, P. N. (2015). Rest is best: The role of rest and task interruptions on vigilance. Cognition, 134, 165–173. https://doi.org/10.106/j.cognition.2014.10.001

Helton, W. S., & Warm, J. S. (2008). Signal salience and the mindlessness theory of vigilance. Acta Psychologica, 129(1), 18–25. https://doi.org/10.1016/j.actpsy.2008.04.002

Herrmann, C. S., Rach, S., Neuling, T., & Strüber, D. (2013). Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7, 279. https://doi.org/10.3389/fnhum.2013.00279

Héroux, M. E., Loo, C. K., Taylor, J. L., & Gandevia, S. C. (2017). Questionable science and reproducibility in electrical brain stimulation research. PLoS ONE, 12(4), e0175635. https://doi.org/10.1371/journal.pone.0175635

Hochberg, Y. (1988). A sharper bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800–802. https://doi.org/10.1093/biomet/75.4.800

Hockey, G. R. J. (1997). Compensatory control in the regulation of human performance under stress and high workload; a cognitive-energetical framework. Biological Psychology, 45(1-3), 73–93. https://doi.org/10.1016/S0301-0511(96)05223-4

Hockey, G. R. J. (2013). The psychology of fatigue: Work, effort and control. Cambridge University Press.

Hoedlmoser, K., Griessenberger, H., Fellinger, R., Freunberger, R., Klimesch, W., Gruber, W., & Schabus, M. (2011). Event-related activity and phase locking during a psychomotor vigilance task over the course of sleep deprivation. Journal of Sleep Research, 20(3), 377–385. https://doi.org/10.1111/j.1365-2869.2010.00892.x

Hommel, B., Kessler, K., Schmitz, F., Gross, J., Akyürek, E., Shapiro, K., & Schnitzler, A. (2006). How the brain blinks: towards a neurocognitive model of the attentional blink. Psychological Research, 70(6), 425–435. https://doi.org/10.1007/s00426-005-0009-3

Hone-Blanchet, A., Edden, R. A., & Fecteau, S. (2016). Online Effects of Transcranial Direct Current Stimulation in Real Time on Human Prefrontal and Striatal Metabolites. Biological Psychiatry, 80(6), 432–438. https://doi.org/10.1016/j.biopsych.2015.11.008

Hopfinger, J. B., Parsons, J., & Fröhlich, F. (2016). Differential effects of 10-Hz and 40-Hz transcranial alternating current stimulation (tACS) on endogenous versus exogenous attention. Cognitive Neuroscience, 8928(June), 1–10. https://doi.org/10.1080/17588928.2016.1194261

Hopstaken, J. F., Linden, D. van der, Bakker, A. B., & Kompier, M. A. J. (2015). A multifaceted investigation of the link between mental fatigue and task disengagement. Psychophysiology, 52(3), 305–315. https://doi.org/10.1111/psyp.12339

Horvath, J. C. (2015). Are current blinding methods for transcranial direct current stimulation (tDCS) effective in healthy populations? Clinical Neurophysiology, 126(11), 2045–2046. https://doi.org/10.1016/j.clinph.2015.04.001

Horvath, J. C., Forte, J. D., & Carter, O. (2014). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review. Neuropsychologia, 66, 213–236. https://doi.org/10.1016/j.neuropsychologia.2014.11.021

Horvath, J. C., Forte, J. D., & Carter, O. (2015a). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535–550. https://doi.org/10.1016/j.brs.2015.01.400

Horvath, J. C., Vogrin, S. J., Carter, O., Cook, M. J., & Forte, J. D. (2015b). Effects of transcranial direct current stimulation on motor evoked potential amplitude are neither reliable nor significant within individuals over 9 separate testing sessions. Brain Stimulation, 8(2), 318. https://doi.org/10.1016/j.brs.2015.01.033

Hsu, W.-Y., Zanto, T. P., Anguera, J. A., Lin, Y.-Y., & Gazzaley, A. (2015). Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex. Cortex, 69, 175–185. https://doi.org/10.1016/j.cortex.2015.05.014

Huang, Y., Datta, A., Bikson, M., & Parra, L. C. (2018). Realistic vOlumetric-Approach to Simulate Transcranial Electric Stimulation — ROAST — a fully automated open-source pipeline. bioRxiv, 217331. https://doi.org/10.1101/217331

Huang, Y., Liu, A. A., Lafon, B., Friedman, D., Dayan, M., Wang, X., … Parra, L. C. (2017). Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. eLife, 6, 1–26. https://doi.org/10.7554/elife.18834

Huber, D. E., Potter, K. W., & Huszar, L. D. (2019). Less “story” and more “reliability” in cognitive neuroscience. Cortex, 113, 347–349. https://doi.org/10.1016/j.cortex.2018.10.030

Imburgio, M. J., & Orr, J. M. (2018). Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis. Neuropsychologia, 117, 156–166. https://doi.org/10.1016/j.neuropsychologia.2018.04.022

Inzlicht, M., & Schmeichel, B. J. (2012). What Is Ego Depletion? Toward a Mechanistic Revision of the Resource Model of Self-Control. Perspectives on Psychological Science, 7(5), 450–463. https://doi.org/10.1177/1745691612454134

Ioannidis, J. P. A. (2008). Why Most Discovered True Associations Are Inflated. Epidemiology, 19, 640–648. https://doi.org/10.1097/EDE.0b013e31818131e7

Iuculano, T., & Cohen Kadosh, R. (2013). The mental cost of cognitive enhancement. Journal of Neuroscience, 33(10), 4482–4486. https://doi.org/10.1523/JNEUROSCI.4927-12.2013

Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C., & Bikson, M. (2016). Animal Models of transcranial Direct Current Stimulation: Methods and Mechanisms. Clinical Neurophysiology, 127(11), 3425–3454. https://doi.org/10.1016/j.clinph.2016.08.016

Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Experimental Brain Research, 216(1), 1–10. https://doi.org/10.1007/s00221-011-2891-9

Jacoby, N., & Lavidor, M. (2018). Null tDCS effects in a sustained attention task: The modulating role of learning. Frontiers in Psychology, 9, 476. https://doi.org/10.3389/fpsyg.2018.00476

Jamil, A., Batsikadze, G., Kuo, H. I., Labruna, L., Hasan, A., Paulus, W., & Nitsche, M. A. (2017). Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. Journal of Physiology, 595(4), 1273–1288. https://doi.org/10.1113/JP272738

JASP Team. (2018). JASP [Computer Software]. Retrieved from https://jasp-stats.org/

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. https://doi.org/10.1006/nimg.2002.1132

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156. https://doi.org/10.1016/S1361-8415(01)00036-6

Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93–110. https://doi.org/10.1016/S0028-3932(99)00045-7

John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the Prevalence of Questionable Research Practices With Incentives for Truth Telling. Psychological Science, 23(5), 524–532. https://doi.org/10.1177/0956797611430953

Johnston, D. W., Allan, J. L., Powell, D. J. H., Jones, M. C., Farquharson, B., Bell, C., & Johnston, M. (2018). Why does work cause fatigue? A real-time investigation of fatigue, and determinants of fatigue in nurses working 12-hour shifts. Annals of Behavioral Medicine, 53(6), 551–562. https://doi.org/10.1093/abm/kay065

Jones, K. T., & Berryhill, M. E. (2012). Parietal contributions to visual working memory depend on task difficulty. Frontiers in Psychiatry, 3, 81. https://doi.org/10.3389/fpsyt.2012.00081

Jongkees, B. J., & Colzato, L. S. (2016). Spontaneous eye blink rate as predictor of dopamine-related cognitive function—A review. Neuroscience and Biobehavioral Reviews, 71, 58–82. https://doi.org/10.1016/j.neubiorev.2016.08.020

Jongkees, B. J., Loseva, A. A., Yavari, F. B., Nitsche, M. A., & Colzato, L. S. (2018). The COMT Val158Met polymorphism does not modulate the after-effect of tDCS on working memory. European Journal of Neuroscience, 49, 263–274. https://doi.org/10.1111/ejn.14261

Jongkees, B. J., Sellaro, R., Beste, C., Nitsche, M. A., Kühn, S., & Colzato, L. S. (2017). L-Tyrosine administration modulates the effect of transcranial direct current stimulation on working memory in healthy humans. Cortex, 90, 103–114. https://doi.org/10.1016/j.cortex.2017.02.014

Juan, C.-H., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L., Cowey, A., & Walsh, V. (2008). Segregation of visual selection and saccades in human frontal eye fields. Cerebral Cortex, 18(10), 2410–2415. https://doi.org/10.1093/cercor/bhn001

Jwa, A. (2015). Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community. Journal of Law and the Biosciences, 2, 1–44. https://doi.org/10.1093/jlb/lsv017

Kajimura, S., Kochiyama, T., Nakai, R., Abe, N., & Nomura, M. (2016). Causal relationship between effective connectivity within the default mode network and mind-wandering regulation and facilitation. NeuroImage, 133, 21–30. https://doi.org/10.1016/j.neuroimage.2016.03.009

Kajimura, S., & Nomura, M. (2015). Decreasing propensity to mind-wander with transcranial direct current stimulation. Neuropsychologia, 75, 533–537. https://doi.org/10.1016/j.neuropsychologia.2015.07.013

Kanai, R., Muggleton, N., & Walsh, V. (2012). Transcranial direct current stimulation of the frontal eye fields during pro- and antisaccade tasks. Frontiers in Psychiatry, 3(May), 45. https://doi.org/10.3389/fpsyt.2012.00045

Karabanov, A. N., Saturnino, G. B., Thielscher, A., & Siebner, H. R. (2019). Can transcranial electrical stimulation localize brain function? Frontiers in Psychology, 10, 213. https://doi.org/10.3389/fpsyg.2019.00213

Kastner, S., Pinsk, M. A., Weerd, P. de, Desimone, R., & Ungerleider, L. G. (1999). Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation. Neuron, 22(4), 751–761. https://doi.org/10.1016/S0896-6273(00)80734-5

Käenmäki, M., Tammimäki, A., Myöhänen, T., Pakarinen, K., Amberg, C., Karayiorgou, M., … Männistö, P. T. (2010). Quantitative role of COMT in dopamine clearance in the prefrontal cortex of freely moving mice. Journal of Neurochemistry, 114(6), 1745–1755. https://doi.org/10.1111/j.1471-4159.2010.06889.x

Kelly, A. J., & Dux, P. E. (2011). Different Attentional Blink Tasks Reflect Distinct Information Processing Limitations: An Individual Differences Approach. Journal of Experimental Psychology: Human Perception and Performance, 37(6), 1867–1873. https://doi.org/10.1037/a0025975

Kerr, N. L. (1998). HARKing : Hypothesizing After the Results are Known. Personality and Social Psychology Review, 2(3), 196–217. https://doi.org/10.1207/s15327957pspr0203_4

Kim, J.-H., Kim, D.-W., Chang, W. H., Kim, Y.-H., Kim, K., & Im, C.-H. (2014). Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neuroscience Letters, 564, 6–10. https://doi.org/10.1016/j.neulet.2014.01.054

Kinsbourne, M. (1970). The cerebral basis of lateral asymmetries in attention. Acta Psychologica, 33, 193–201.

Klein, C., Andresen, B., & Thom, E. (1993). Blinking, alpha brain waves and smoking in schizophrenia. Acta Psychiatrica Scandinavica, 87(3), 172–178. https://doi.org/10.1111/j.1600-0447.1993.tb03351.x

Klein, R. A., Vianello, M., Hasselman, F., Adams, B. G., Adams, R. B., Alper, S., … Nosek, B. A. (2018). Many Labs 2: Investigating variation in replicability across samples and settings. Advances in Methods and Practices in Psychological Science, 1(4), 443–490. https://doi.org/10.1177/2515245918810225

Kleiner, M., Brainard, D. H., & Pelli, D. G. (2007). What’s new in Psychtoolbox-3? Perception, 36, 1–89.

Klimesch, W. (2012). Alpha band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007

Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003

Knotkova, H., Nitsche, M. A., & Polania, R. (2019). Transcranial Direct Current Stimulation Modulation of Neurophysiological Functional Outcomes: Neurophysiological Principles and Rationale. In H. Knotkova, M. A. Nitsche, M. Bikson, & A. J. Woods (Eds.), Practical guide to transcranial direct current stimulation (pp. 133–165). https://doi.org/10.1007/978-3-319-95948-1

Ko, M.-H., Han, S.-H., Park, S.-H., Seo, J.-H., & Kim, Y.-H. (2008). Improvement of visual scanning after DC brain polarization of parietal cortex in stroke patients with spatial neglect. Neuroscience Letters, 448(2), 171–174. https://doi.org/10.1016/j.neulet.2008.10.050

Koelega, H. S. (1993). Stimulant drugs and vigilance performance: a review. Psychopharmacology, 111(1), 1–16. https://doi.org/10.1007/BF02257400

Koelega, H. S., Verbaten, M. N., Leeuwen, T. H. van, Kenemans, J. L., Kemner, C., & Sjouw, W. (1992). Time effects on event-related brain potentials and vigilance performance. Biological Psychology, 34(1), 59–86. https://doi.org/10.1016/0301-0511(92)90024-O

Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Krause, B., & Cohen Kadosh, R. (2014). Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in Systems Neuroscience, 8, 25. https://doi.org/10.3389/fnsys.2014.00025

Krause, B., Márquez-Ruiz, J., & Cohen Kadosh, R. (2013). The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? Frontiers in Human Neuroscience, 7, 602. https://doi.org/10.3389/fnhum.2013.00602

Kristjansson, S. D., Kircher, J. C., & Webb, A. K. (2007). Multilevel models for repeated measures research designs in psychophysiology: An introduction to growth curve modeling. Psychophysiology, 44(5), 728–736. https://doi.org/10.1111/j.1469-8986.2007.00544.x

Kronberg, G., Bridi, M., Abel, T., Bikson, M., & Parra, L. C. (2017). Direct Current Stimulation Modulates LTP and LTD: Activity Dependence and Dendritic Effects. Brain Stimulation, 10(November), 51–58. https://doi.org/10.1016/j.brs.2016.10.001

Kruis, A., Slagter, H. A., Bachhuber, D. R., Davidson, R. J., & Lutz, A. (2016). Effects of meditation practice on spontaneous eyeblink rate. Psychophysiology, 53(5), 749–758. https://doi.org/10.1111/psyp.12619

Kuo, M. F., Paulus, W., & Nitsche, M. A. (2008). Boosting focally-induced brain plasticity by dopamine. Cerebral Cortex, 18(3), 648–651. https://doi.org/10.1093/cercor/bhm098

Kurzban, R., Duckworth, A., Kable, J. W., & Myers, J. (2013). An opportunity cost model of subjective effort and task performance. Behavioral and Brain Sciences, 36(06), 661–679. https://doi.org/10.1017/S0140525X12003196

Laakso, I., Mikkonen, M., Koyama, S., Hirata, A., & Tanaka, S. (2019). Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? Scientific Reports, 9, 626. https://doi.org/10.1038/s41598-018-37226-x

Laczó, B., Antal, A., Niebergall, R., Treue, S., & Paulus, W. (2012). Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimulation, 5(4), 484–491. https://doi.org/10.1016/j.brs.2011.08.008

Lakens, D. (2014). Performing high-powered studies efficiently with sequential analyses. European Journal of Social Psychology, 44(7), 701–710. https://doi.org/10.1002/ejsp.2023

Lakens, D. (2017). Equivalence tests: A practical primer for t-tests, correlations, and meta-analyses. Social Psychological and Personality Science, 1, 1–8. https://doi.org/10.1177/1948550617697177

Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence Testing for Psychological Research: A Tutorial. Advances in Methods and Practices in Psychological Science, 1(2), 259–269. https://doi.org/10.1177/2515245918770963

Landau, W. M., Bishop, G., & Clare, M. (1964). Analysis of the form and distribution of evoked cortical potentials under the influence of polarizing currents. Journal of Neurophysiology, 27, 788–813.

Langner, R., & Eickhoff, S. B. (2012). Sustaining Attention to Simple Tasks: A Meta-Analytic Review of the Neural Mechanisms of Vigilant Attention. Psychological Bulletin, 138, 1—–31. https://doi.org/10.1037/a0030694

Lanina, A. A., Feurra, M., & Gorbunova, E. S. (2018). No effect of the right posterior parietal cortex tDCS in dual-target visual search. Frontiers in Psychology, 9, 2112. https://doi.org/10.3389/fpsyg.2018.02112

Lawrence, M. A. (2016). Ez: Easy analysis and visualization of factorial experiments. Retrieved from https://CRAN.R-project.org/package=ez

Làdavas, E., Giulietti, S., Avenanti, A., Bertini, C., Lorenzini, E., Quinquinio, C., & Serino, A. (2015). A-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect. Restorative Neurology and Neuroscience, 33(5), 647–662. https://doi.org/10.3233/RNN-140464

Learmonth, G., Felisatti, F., Siriwardena, N., Checketts, M., Benwell, C. S., Märker, G., … Harvey, M. (2017). No interaction between tDCS current strength and baseline performance: A conceptual replication. Frontiers in Neuroscience, 11, 664. https://doi.org/10.3389/fnins.2017.00664

Learmonth, G., Thut, G., Benwell, C. S., & Harvey, M. (2015). The implications of state-dependent tDCS effects in aging: Behavioural response is determined by baseline performance. Neuropsychologia, 74, 108–119. https://doi.org/10.1016/j.neuropsychologia.2015.01.037

Lefaucheur, J.-P. (2016). A comprehensive database of published tDCS. Clinical Neurophysiology, 46(6), 319–398. https://doi.org/10.1016/j.neucli.2016.10.002

Lefaucheur, J.-P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F., … Paulus, W. (2016). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology, 128(1), 56–92. https://doi.org/10.1016/j.clinph.2016.10.087

Lenth, R. (2018). Emmeans: Estimated marginal means, aka least-squares means. Retrieved from https://CRAN.R-project.org/package=emmeans

Li, L. M., Leech, R., Scott, G., Malhotra, P., Seemungal, B., & Sharp, D. J. (2015). The effect of oppositional parietal transcranial direct current stimulation on lateralized brain functions. European Journal of Neuroscience, 42(11), 2904–2914. https://doi.org/10.1111/ejn.13086

Li, L. M., Uehara, K., & Hanakawa, T. (2015). The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Frontiers in Cellular Neuroscience, 9(May), 181. https://doi.org/10.3389/fncel.2015.00181

Liebetanz, D. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125(10), 2238–2247. https://doi.org/10.1093/brain/awf238

Lim, J., & Kwok, K. (2016). The effects of varying break length on attention and time on task. Human Factors, 58, 472–481. https://doi.org/10.1177/0018720815617395

Liu, A., Vöröslakos, M., Kronberg, G., Henin, S., Krause, M. R., Huang, Y., … Buzsáki, G. (2018). Immediate neurophysiological effects of transcranial electrical stimulation. Nature Communications, 9(1), 5092. https://doi.org/10.1038/s41467-018-07233-7

Loftus, A. M., & Nicholls, M. E. R. (2012). Testing the activation-orientation account of spatial attentional asymmetries using transcranial direct current stimulation. Neuropsychologia, 50(11), 2573–2576. https://doi.org/10.1016/j.neuropsychologia.2012.07.003

London, R. E., & Slagter, H. A. (2015). Effects of transcranial direct current stimulation over left dorsolateral PFC on the attentional blink depend on individual baseline performance. Journal of Cognitive Neuroscience, 27(12), 2382–2393. https://doi.org/10.1162/jocn_a_00867

Looi, C. Y., Duta, M., Brem, A.-k., Brem, A.-k., & Huber, S. (2016). Combining brain stimulation and video game to induce and cognitive enhancement. Scientific Reports, 6, 22003. https://doi.org/10.1038/srep22003

Lorenz, R., Simmons, L. E., Monti, R. P., Arthur, J. L., Limal, S., Laakso, I., … Violante, I. R. (2019). Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization. Brain Stimulation. https://doi.org/10.1016/j.brs.2019.07.003

Lorist, M. M., Bezdan, E., Caat, M. ten, Span, M. M., Roerdink, J. B. T. M., & Maurits, N. M. (2009). The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study. Brain Research, 1270, 95–106. https://doi.org/10.1016/j.brainres.2009.03.015

Lowe, K., & Schall, J. D. (2017). Functional categories in macaque frontal eye field. bioRxiv, 212589, 1–37. https://doi.org/10.1101/212589

López-Alonso, V., Cheeran, B., Río-Rodríguez, D., & Fernández-Del-Olmo, M. (2014). Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimulation, 7(3), 372–380. https://doi.org/10.1016/j.brs.2014.02.004

López-Alonso, V., Fernández-del-Olmo, M., Costantini, A., Gonzalez-Henriquez, J. J., & Cheeran, B. (2015). Intra-individual variability in the response to anodal transcranial direct current stimulation. Clinical Neurophysiology, 126(12), 2342–2347. https://doi.org/10.1016/j.clinph.2015.03.022

Luck, S. J. (2005). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.

Luck, S. J., & Gold, J. M. (2008). The Construct of Attention in Schizophrenia. Biological Psychiatry, 64(1), 34–39. https://doi.org/10.1016/j.biopsych.2008.02.014

Luck, S. J., Hillyard, S. A., Mouloua, M., Woldorff, M. G., Clark, V. P., & Hawkins, H. L. (1994). Effects of spatial cueing on luminance detectability: psychophysical and electrophysiological evidence for Early selection. Journal of Experimental Psychology: Human Perception and Performance, 20(4), 887–904. https://doi.org/10.1037/0096-1523.20.4.887

Lutz, A., Slagter, H. A., Dunne, J. D., & Davidson, R. J. (2008). Attention regulation and monitoring in meditation. Trends in Cognitive Sciences, 12(4), 163–169. https://doi.org/10.1016/j.tics.2008.01.005

Lutz, A., Slagter, H. A., Rawlings, N. B., Francis, A. D., Greischar, L. L., & Davidson, R. J. (2009). Mental training enhances attentional stability: neural and behavioral evidence. Journal of Neuroscience, 29(42), 13418–13427. https://doi.org/10.1523/JNEUROSCI.1614-09.2009

Ly, A., Verhagen, J., & Wagenmakers, E.-J. (2016). Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. Journal of Mathematical Psychology, 72, 19–32. https://doi.org/10.1016/j.jmp.2015.06.004

Mackey, W. E., Winawer, J., & Curtis, C. E. (2017). Visual field map clusters in human cortex. eLife, 6:e22974. https://doi.org/10.7554/eLife.22974

Mackworth, N. (1948). The breakdown of vigilance during prolonged visual search. Quarterly Journal of Experimental Psychology, 1, 6–21.

MacLean, K., Aichele, S., Bridwell, D., Mangun, G., Wojciulik, E., & Saron, C. (2009). Interactions between endogenous and exogenous attention during vigilance. Attention, Perception & Psychophysics, 71(5), 1042–1058. https://doi.org/10.3758/APP.71.5.1042

MacLean, M. H., & Arnell, K. M. (2012). A conceptual and methodological framework for measuring and modulating the attentional blink. Attention, Perception, and Psychophysics, 74(6), 1080–1097. https://doi.org/10.3758/s13414-012-0338-4

Mancuso, L. E., Ilieva, I. P., Hamilton, R. H., & Farah, M. J. (2016). Does Transcranial Direct Current Stimulation Improve Healthy Working Memory?: A Meta-analytic Review. Journal of Cognitive Neuroscience, 28(8), 1063–1089. https://doi.org/10.1162/jocn_a_00956

Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology: Human Perception and Performance, 17(4), 1057–1074. https://doi.org/10.1037/0096-1523.17.4.1057

Manly, T., Dobler, V. B., Dodds, C. M., & George, M. A. (2005). Rightward shift in spatial awareness with declining alertness. Neuropsychologia, 43(12), 1721–1728. https://doi.org/10.1016/j.neuropsychologia.2005.02.009

Manly, T., Robertson, I., & Galloway, M. (1999). The absent mind: further investigations of sustained attention to response. Neuropsychologia, 37, 661–670. https://doi.org/10.1016/S0028-3932(98)00127-4

Marchetti, G. M., Drton, M., & Sadeghi, K. (2015). Ggm: Functions for graphical markov models. Retrieved from https://CRAN.R-project.org/package=ggm

Martens, S., Munneke, J., Smid, H., & Johnson, A. (2006). Quick Minds Don’t Blink: Electrophysiological Correlates of Individual Differences in Attentional Selection. Journal of Cognitive Neuroscience, 18(9), 1423–1438. https://doi.org/10.1162/jocn.2006.18.9.1423

Martens, S., & Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience and Biobehavioral Reviews, 34(6), 947–957. https://doi.org/10.1016/j.neubiorev.2009.12.005

Massar, S. A., Lim, J., Sasmita, K., & Chee, M. W. (2016). Rewards boost sustained attention through higher effort: A value-based decision making approach. Biological Psychology, 120, 21–27. https://doi.org/10.1016/j.biopsycho.2016.07.019

Matsuo, F., Peters, J. F., & Reilly, E. L. (1975). Electrical phenomena associated with movements of the eyelid. Electroencephalography and Clinical Neurophysiology, 38(5), 507–511. https://doi.org/10.1016/0013-4694(75)90191-1

Mauri, P., Miniussi, C., Balconi, M., & Brignani, D. (2015). Bursts of transcranial electrical stimulation increase arousal in a continuous performance test. Neuropsychologia, 74, 127–136. https://doi.org/10.1016/j.neuropsychologia.2015.03.006

Mazaheri, A., Schouwenburg, M. R. van, Dimitrijevic, A., Denys, D., Cools, R., & Jensen, O. (2014). Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities. NeuroImage, 87, 356–362. https://doi.org/10.1016/j.neuroimage.2013.10.052

McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlations coefficients. Psychological Methods, 1(1), 30–46. https://doi.org/10.1037/1082-989X.1.4.390

McIntire, L. K., McKinley, R. A., Goodyear, C., & Nelson, J. M. (2014). A comparison of the effects of transcranial direct current stimulation and caffeine on vigilance and cognitive performance during extended wakefulness. Brain Stimulation, 7(4), 499–507. https://doi.org/10.1016/j.brs.2014.04.008

McNab, F., Zeidman, P., Rutledge, R. B., Smittenaar, P., Brown, H. R., Adams, R. A., & Dolan, R. J. (2015). Age-related changes in working memory and the ability to ignore distraction. Proceedings of the National Academy of Sciences, 112(20), 6515–6518. https://doi.org/10.1073/pnas.1504162112

Medeiros, L. F., Souza, I. C. C. de, Vidor, L. P., Souza, A. de, Deitos, A., Volz, M. S., … Torres, I. L. S. (2012). Neurobiological effects of transcranial direct current stimulation: a review. Frontiers in Psychiatry, 3, 110. https://doi.org/10.3389/fpsyt.2012.00110

Medina, J., Beauvais, J., Datta, A., Bikson, M., Coslett, H. B., & Hamilton, R. H. (2013). Transcranial direct current stimulation accelerates allocentric target detection. Brain Stimulation, 6(3), 433–439. https://doi.org/10.1016/j.brs.2012.05.008

Medina, J., & Cason, S. (2017). No evidential value in samples of transcranial direct current stimulation (tDCS) studies of cognition and working memory in healthy populations. Cortex, 94, 131–141. https://doi.org/10.1016/j.cortex.2017.06.021

Meyer, B., Mann, C., Götz, M., Gerlicher, A., Saase, V., Yuen, K. S. L., … Kalisch, R. (2019). Increased neural activity in mesostriatal regions after prefrontal transcranial direct current stimulation and L-DOPA administration. Journal of Neuroscience, 1–38. https://doi.org/10.1523/JNEUROSCI.3128-18.2019

Miller, J., Berger, B., & Sauseng, P. (2015). Anodal transcranial direct current stimulation (tDCS) increases frontal-midline theta activity in the human EEG: a preliminary investigation of non-ianvasive stimulation. Neuroscience Letters, 588, 114–119. https://doi.org/10.1016/j.neulet.2015.01.014

Minarik, T., Berger, B., Althaus, L., Bader, V., Biebl, B., Brotzeller, F., … Sauseng, P. (2016). The importance of sample size for reproducibility of tDCS effects. Frontiers in Human Neuroscience, 10(September), 453. https://doi.org/10.3389/FNHUM.2016.00453

Molaee-Ardekani, B., Márquez-Ruiz, J., Merlet, I., Leal-Campanario, R., Gruart, A., Sánchez-Campusano, R., … Wendling, F. (2013). Effects of transcranial Direct Current Stimulation (tDCS) on cortical activity: a computational modeling study. Brain Stimulation, 6(1), 25–39. https://doi.org/10.1016/j.brs.2011.12.006

Moliadze, V., Antal, A., & Paulus, W. (2010). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 121(12), 2165–2171. https://doi.org/10.1016/j.clinph.2010.04.033

Monte-Silva, K., Kuo, M.-F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 6(3), 424–432. https://doi.org/10.1016/j.brs.2012.04.011

Monte-Silva, K., Kuo, M.-F., Thirugnanasambandam, N., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2009). Dose-Dependent Inverted U-Shaped Effect of Dopamine (D2-Like) Receptor Activation on Focal and Nonfocal Plasticity in Humans. Journal of Neuroscience, 29(19), 6124–6131. https://doi.org/10.1523/JNEUROSCI.0728-09.2009

Moore, T., & Fallah, M. (2001). Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 1273–1276. https://doi.org/10.1073/pnas.021549498

Moos, K., Vossel, S., Weidner, R., Sparing, R., & Fink, G. R. (2012). Modulation of top-down control of visual attention by cathodal tDCS over right IPS. Journal of Neuroscience, 32(46), 16360–16368. https://doi.org/10.1523/JNEUROSCI.6233-11.2012

Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64. https://doi.org/10.20982/tqmp.04.2.p061

Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of bayes factors for common designs. Retrieved from https://CRAN.R-project.org/package=BayesFactor

Mrazek, M. D., Smallwood, J., Franklin, M. S., Chin, J. M., Baird, B., & Schooler, J. W. (2012). The role of mind-wandering in measurements of general aptitude. Journal of Experimental Psychology: General, 141(4), 788–798. https://doi.org/10.1037/a0027968

Munafò, M. R., Nosek, B. A., Bishop, D. V. M., Button, K. S., Chambers, C. D., Percie du Sert, N., … Ioannidis, J. P. A. (2017). A manifesto for reproducible science. Nature Human Behaviour, 1(1), 0021. https://doi.org/10.1038/s41562-016-0021

Munoz, D. P., & Fecteau, J. H. (2002). Vying for dominace: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. Progress in Brain Research, 140. https://doi.org/10.1016/S0079-6123(02)40039-8

Munoz, D. P., & Wurtz, R. H. (1992). Role of the rostral superior colliculus in active visual fixation and execution of express saccades. Journal of Neurophysiology, 67(4), 1000–1002. https://doi.org/10.1152/jn.1992.67.4.1000

Müller, K. (2017). Here: A simpler way to find your files. Retrieved from https://CRAN.R-project.org/package=here

Müller, N. G., Vellage, A. K., Heinze, H. J., & Zaehle, T. (2015). Entrainment of Human Alpha Oscillations Selectively Enhances Visual Conjunction Search. PLoS ONE, 10(11), e0143533. https://doi.org/10.1371/journal.pone.0143533

Narayanan, N. S., Cavanagh, J. F., Frank, M. J., & Laubach, M. (2013). Common medial frontal mechanisms of adaptive control in humans and rodents. Nature Neuroscience, 16(12), 1888–1895. https://doi.org/10.1038/nn.3549

Nelson, J. T., McKinley, R. A., Golob, E. J., Warm, J. S., & Parasuraman, R. (2014). Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). NeuroImage, 85, 909–917. https://doi.org/10.1016/j.neuroimage.2012.11.061

Newman, D. P., O’Connell, R. G., & Bellgrove, M. A. (2013). Linking time-on-task, spatial bias and hemispheric activation asymmetry: A neural correlate of rightward attention drift. Neuropsychologia, 51(7), 1215–1223. https://doi.org/10.1016/j.neuropsychologia.2013.03.027

Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67, 53–83. https://doi.org/10.1016/S0301-0082(02)00011-4

Nieratschker, V., Kiefer, C., Giel, K., Kruger, R., & Plewnia, C. (2015). The COMT Val/Met polymorphism modulates effects of tDCS on response inhibition. Brain Stimulation, 8(2), 283–288. https://doi.org/10.1016/j.brs.2014.11.009

Nilsson, J., Lebedev, A. V., Rydström, A., & Lövdén, M. (2017). Direct-Current Stimulation Does Little to Improve the Outcome of Working Memory Training in Older Adults. Psychological Science, 28(7), 907–920. https://doi.org/10.1177/0956797617698139

Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. https://doi.org/10.1016/j.brs.2008.06.004

Nitsche, M. A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., … Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. Journal of Physiology, 553(1), 293–301. https://doi.org/10.1113/jphysiol.2003.049916

Nitsche, M. A., Lampe, C., Antal, A., Liebetanz, D., Lang, N., Tergau, F., & Paulus, W. (2006). Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. European Journal of Neuroscience, 23(6), 1651–1657. https://doi.org/10.1111/j.1460-9568.2006.04676.x

Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527 Pt 3(2000), 633–639. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633.x

Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901. https://doi.org/10.1212/WNL.57.10.1899

Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: overlapping neural systems. NeuroImage, 11(3), 210–216. https://doi.org/10.1006/nimg.2000.0539

Nosek, B. A., Ebersole, C. R., Dehaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. Proceedings of the National Academy of Sciences, 115(11), 2600–2606. https://doi.org/10.1073/pnas.1708274114

Nyffeler, T., Wurtz, P., Lüscher, H. R., Hess, C. W., Senn, W., Pflugshaupt, T., … Müri, R. M. (2006). Repetitive TMS over the human oculomotor cortex: Comparison of 1-Hz and theta burst stimulation. Neuroscience Letters, 409(1), 57–60. https://doi.org/10.1016/j.neulet.2006.09.011

O’Connell, R. G., Dockree, P. M., Robertson, I. H., Bellgrove, M. A., Foxe, J. J., & Kelly, S. P. (2009). Uncovering the neural signature of lapsing attention: electrophysiological signals predict errors up to 20 s before they occur. Journal of Neuroscience, 29(26), 8604–8611. https://doi.org/10.1523/JNEUROSCI.5967-08.2009

Olivers, C. N., & Nieuwenhuis, S. (2005). The beneficial effect of concurrent task-irrelevant mental activity on temporal attention. Psychological Science, 16(4), 265–269. https://doi.org/10.1111/j.0956-7976.2005.01526.x

Olivers, C. N., & Nieuwenhuis, S. (2006). The beneficial effects of additional task load, positive affect, and instruction on the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 364–379. https://doi.org/10.1037/0096-1523.32.2.364

Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. https://doi.org/10.1126/science.aac4716

Opitz, A., Falchier, A., Yan, C.-G., Yeagle, E. M., Linn, G. S., Megevand, P., … Schroeder, C. E. (2016). Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Scientific Reports, 6(August), 31236. https://doi.org/10.1038/srep31236

Opitz, A., Paulus, W., Will, S., Antunes, A., & Thielscher, A. (2015). Determinants of the electric field during transcranial direct current stimulation. NeuroImage, 109, 140–150. https://doi.org/10.1016/j.neuroimage.2015.01.033

Parasuraman, R. (1979). Memory load and event rate control sensitivity decrements in sustained attention. Science, 205(4409), 924–927. https://doi.org/10.1126/science.472714

Parkin, B. L., Bhandari, M., Glen, J. C., & Walsh, V. (2018). The physiological effects of transcranial electrical stimulation do not apply to parameters commonly used in studies of cognitive neuromodulation. Neuropsychologia, 1–8. https://doi.org/10.1016/j.neuropsychologia.2018.03.030

Parkin, B. L., Ekhtiari, H., & Walsh, V. F. (2015). Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron, 87(5), 932–945. https://doi.org/10.1016/j.neuron.2015.07.032

Pashler, H., & Wagenmakers, E.-J. (2012). Editors’ Introduction to the Special Section on Replicability in Psychological Science: A Crisis of Confidence? Perspectives on Psychological Science, 7(6), 528–530. https://doi.org/10.1177/1745691612465253

Patil, P., Peng, R. D., & Leek, J. T. (2016). What should researchers expect when they replicate studies? A statistical view of replicability in psychological science. Perspectives on Psychological Science, 11(4), 539–544. https://doi.org/10.1177/1745691616646366

Paus, T. (1996). Location and function of the human frontal eye-field: a selective review. Neuropsychologia, 34(6), 475–483. https://doi.org/10.1016/0028-3932(95)00134-4

Pearson, K., & Filon, L. N. G. (1898). Mathematical Contributions to the Theory of Evolution. IV. On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 191(0), 229–311. https://doi.org/10.1098/rsta.1898.0007

Pelletier, S. J., & Cicchetti, F. (2015). Cellular and Molecular Mechanisms of Action of Transcranial Direct Current Stimulation: Evidence from In Vitro and In Vivo Models. International Journal of Neuropsychopharmacology, 18(2), pyu047. https://doi.org/10.1093/ijnp/pyu047

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442.

Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme, A., & Oostenveld, R. (2019). EEG-BIDS, an extension to the brain imaging data structure for electroencephalography. Scientific Data, 6(1), 103. https://doi.org/10.1038/s41597-019-0104-8

Peterchev, A. V., Wagner, T. a, Miranda, P. C., Nitsche, M. A., Paulus, W., Lisanby, S. H., … Bikson, M. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimulation, 5(4), 435–453. https://doi.org/10.1016/j.brs.2011.10.001

Picazio, S., Granata, C., Caltagirone, C., Petrosini, L., & Oliveri, M. (2015). Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening. Frontiers in Human Neuroscience, 9, 158. https://doi.org/10.3389/fnhum.2015.00158

Pinheiro, J., Bates, D., & R-core. (2018). nlme: Linear and Nonlinear Mixed Effects Models [Computer Software]. Retrieved from https://cran.r-project.org/package=nlme

Plewnia, C., Zwissler, B., Längst, I., Maurer, B., Giel, K., & Krüger, R. (2013). Effects of transcranial direct current stimulation (tDCS) on executive functions: Influence of COMT Val/Met polymorphism. Cortex, 49(7), 1801–1807. https://doi.org/10.1016/j.cortex.2012.11.002

Polanía, R., Nitsche, M. A., & Ruff, C. C. (2018). Studying and modifying brain function with non-invasive brain stimulation. Nature Neuroscience. https://doi.org/10.1038/s41593-017-0054-4

Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231

Potter, M. C., Chun, M. M., Banks, B. S., & Muckenhoupt, M. (1998). Two attentional deficits in serial target search: The visual attentional blink and an amodal task-switch deficit. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(4), 979–992. https://doi.org/10.1037/0278-7393.24.4.979

Priori, A. (2003). Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114(4), 589–595. https://doi.org/10.1016/S1388-2457(02)00437-6

Priori, A., Berardelli, A., Rona, S., Accornero, N., & Manfredi, M. (1998). Polarization of the human motor cortex through the scalp. NeuroReport, 9(10), 2257–2260.

Purpura, D., & McMurtry, J. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology, 28, 166–185.

Quintana, D. S. (2015). From pre-registration to publication: A non-technical primer for conducting a meta-analysis to synthesize correlational data. Frontiers in Psychology, 6, 1549. https://doi.org/10.3389/fpsyg.2015.01549

Radman, T., Ramos, R. L., Brumberg, J. C., & Bikson, M. (2009). Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulation, 2. https://doi.org/10.1016/j.brs.2009.03.007

Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18(3), 849–860. https://doi.org/10.1037/0096-1523.18.3.849

R Core Team. (2018). R: A language and environment for statistical computing. Retrieved from https://www.R-project.org/

Reato, D., Salvador, R., Bikson, M., Opitz, A., Dmochowski, J., & Miranda, P. C. (2019). Principles of Transcranial Direct Current Stimulation (tDCS): Introduction to the Biophysics of tDCS. In H. Knotkova, M. A. Nitsche, M. Bikson, & A. J. Woods (Eds.), Practical guide to transcranial direct current stimulation (pp. 45–80). https://doi.org/10.1007/978-3-319-95948-1

Redfearn, J. W. T., Lippold, O. C. J., & Costain, R. (1964). A preliminary account of the clinical effects of polarizing the brain in certain psychiatric disorders. The British Journal of Psychiatry, 110, 773–785. https://doi.org/10.1192/bjp.110.469.773

Reinhart, R. M. G., & Woodman, G. F. (2015). Enhancing long-term memory with stimulation tunes visual attention in one trial. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 625–630. https://doi.org/10.1073/pnas.1417259112

Reteig, L. C., Brink, R. L. van den, Prinssen, S., Cohen, M. X., & Slagter, H. A. (2018a). Sustaining attention for a prolonged period of time increases temporal variability in cortical responses [Dataset]. https://doi.org/10.17605/OSF.IO/456HE

Reteig, L. C., Brink, R. L. van den, Prinssen, S., Cohen, M. X., & Slagter, H. A. (2019a). Sustaining attention for a prolonged period of time increases temporal variability in cortical responses. Cortex, 117, 16–32. https://doi.org/10.1016/j.cortex.2019.02.016

Reteig, L. C., Knapen, T., Roelofs, F. J. F. W., Ridderinkhof, K. R., & Slagter, H. A. (2018b). No Evidence That Frontal Eye Field tDCS Affects Latency or Accuracy of Prosaccades. Frontiers in Neuroscience, 12, 617. https://doi.org/10.3389/fnins.2018.00617

Reteig, L. C., Knapen, T., Roelofs, F. J. F. W., Ridderinkhof, K. R., & Slagter, H. A. (2018c). No evidence that frontal eye field tDCS affects latency or accuracy of prosaccades [Dataset]. https://doi.org/10.21942/uva.6462770

Reteig, L. C., Newman, L. A., Ridderinkhof, K. R., & Slagter, H. A. (2019b). EEG study of the attentional blink; before, during, and after transcranial Direct Current Stimulation (tDCS). https://doi.org/10.18112/openneuro.ds001810.v1.1.0

Reteig, L. C., Talsma, L. J., Schouwenburg, M. R. van, & Slagter, H. A. (2017). Transcranial Electrical Stimulation as a Tool to Enhance Attention. Journal of Cognitive Enhancement, 1(1), 10–25. https://doi.org/10.1007/s41465-017-0010-y

Revelle, W. (2018). Psych: Procedures for psychological, psychometric, and personality research. Retrieved from https://CRAN.R-project.org/package=psych

Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611–647. https://doi.org/10.1146/annurev.neuro.26.041002.131039

Rieckmann, N., Rapp, M. A., & Müller-Nordhorn, J. (2009). Gene-Environment Interactions and Depression. JAMA, 302(17), 1859. https://doi.org/10.1001/jama.2009.1578

Riggall, K., Forlini, C., Carter, A., Hall, W., Weier, M., Partridge, B., & Meinzer, M. (2015). Researchers’ perspectives on scientific and ethical issues with transcranial direct current stimulation: An international survey. Scientific Reports, 5(April), 10618. https://doi.org/10.1038/srep10618

Rihs, T. A., Michel, C. M., & Thut, G. (2009). A bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention. NeuroImage, 44(1), 190–199. https://doi.org/10.1016/j.neuroimage.2008.08.022

Rivaud, S., Müri, R. M., Gaymard, B., Vermersch, A. I., & Pierrot-Deseilligny, C. (1994). Eye movement disorders after frontal eye field lesions in humans. Experimental Brain Research, 102(1), 110–120. https://doi.org/10.1007/BF00232443

Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., & Kahana, M. J. (2006). Human neocortical oscillations exhibit theta phase differences between encoding and retrieval. NeuroImage, 31(3), 1352–1358. https://doi.org/10.1016/j.neuroimage.2006.01.009

Ro, T., Farnè, A., & Chang, E. (2002). Locating the human frontal eye fields with transcranial magnetic stimulation. Journal of Clinical and Experimental Neuropsychology, 24(7), 930–940. https://doi.org/10.1076/jcen.24.7.930.8385

Robbins, T., & Arnsten, A. (2009). The Neuropsychopharmacology of Fronto-Executive Function: Monoaminergic Modulation. Annual Review of Neuroscience, 32(1), 267–287. https://doi.org/10.1146/annurev.neuro.051508.135535

Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). ’Oops!’: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758. https://doi.org/10.1016/S0028-3932(97)00015-8

Robinson, D., & Hayes, A. (2018). Broom: Convert statistical analysis objects into tidy tibbles. Retrieved from https://CRAN.R-project.org/package=broom

Roe, J. M., Nesheim, M., Mathiesen, N. C., Moberget, T., Alnæs, D., & Sneve, M. H. (2016). The effects of tDCS upon sustained visual attention are dependent on cognitive load. Neuropsychologia, 80, 1–8. https://doi.org/10.1016/j.neuropsychologia.2015.11.005

Rorden, C. (2017). Surf Ice. Retrieved from https://www.nitrc.org/projects/surfice/

Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638–641. https://doi.org/10.1037/0033-2909.86.3.638

Ross, H. A., Russell, P. N., & Helton, W. S. (2014). Effects of breaks and goal switches on the vigilance decrement. Experimental Brain Research, 232(6), 1729–1737. https://doi.org/10.1007/s00221-014-3865-5

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374. https://doi.org/10.1016/j.jmp.2012.08.001

Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R., & Wagenmakers, E.-J. (2016). Bayesian Analysis of Factorial Designs. Psychological Methods, 22(2), 304–321. https://doi.org/10.1037/met0000057

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16(2), 225–237. https://doi.org/10.3758/PBR.16.2.225

Rousselet, G. A., Pernet, C. R., & Wilcox, R. R. (2017). Beyond differences in means: Robust graphical methods to compare two groups in neuroscience. European Journal of Neuroscience, 46(2), 1738–1748. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28544058

Roy, L. B., Sparing, R., Fink, G. R., & Hesse, M. D. (2015). Modulation of attention functions by anodal tDCS on right PPC. Neuropsychologia, 74, 96–107. https://doi.org/10.1016/j.neuropsychologia.2015.02.028

RStudio Team. (2016). RStudio: Integrated Development Environment for R. Retrieved from http://www.rstudio.com/

Sack, A. T., Cohen Kadosh, R., Schuhmann, T., Moerel, M., Walsh, V., & Goebel, R. (2009). Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. Journal of Cognitive Neuroscience, 21(2), 207–221. https://doi.org/10.1162/jocn.2009.21126

Samani, M. M., Agboada, D., Jamil, A., Kuo, M.-F., & Nitsche, M. A. (2019). Titrating the neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex, 237(4), 919–925. https://doi.org/10.1016/j.cortex.2019.04.016

Santarnecchi, E., Brem, A.-K., Levenbaum, E., Thompson, T., Kadosh, R. C., & Pascual-Leone, A. (2015). Enhancing cognition using transcranial electrical stimulation. Current Opinion in Behavioral Sciences, 4, 171–178. https://doi.org/10.1016/j.cobeha.2015.06.003

Santarnecchi, E., Feurra, M., Galli, G., Rossi, A., & Rossi, S. (2013). Overclock Your Brain for Gaming? Ethical, Social and Health Care Risks. Brain Stimulation, 6(5), 713–714. https://doi.org/10.1016/j.brs.2013.07.005

Sarkar, A., Dowker, A., & Cohen Kadosh, R. (2014). Cognitive Enhancement or Cognitive Cost: Trait-Specific Outcomes of Brain Stimulation in the Case of Mathematics Anxiety. Journal of Neuroscience, 34(50), 16605–16610. https://doi.org/10.1523/JNEUROSCI.3129-14.2014

Sarmiento, C. I., San-Juan, D., & Prasath, V. B. S. (2016). Letter to the Editor: Brief history of transcranial direct current stimulation (tDCS): from electric fishes to microcontrollers. Psychological Medicine, 46, 3259–3261. https://doi.org/10.1017/S0033291716001926

Saturnino, G. B., Antunes, A., & Thielscher, A. (2015). On the importance of electrode parameters for shaping electric field patterns generated by tDCS. NeuroImage, 120, 25–35. https://doi.org/10.1016/j.neuroimage.2015.06.067

Saturnino, G. B., Madsen, K. H., Siebner, H. R., & Thielscher, A. (2017). How to target inter-regional phase synchronization with dual-site Transcranial Alternating Current Stimulation. NeuroImage, 163, 68–80. https://doi.org/10.1016/j.neuroimage.2017.09.024

Saturnino, G. B., Puonti, O., Nielsen, J. D., Antonenko, D., Madsen, K. H. H., & Thielscher, A. (2018). SimNIBS 2.1: A comprehensive pipeline for individualized electric field modelling for transcranial brain stimulation. bioRxiv, 500314. https://doi.org/10.1101/500314

Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., … Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22(11), 2917–2926. https://doi.org/10.1111/j.1460-9568.2005.04482.x

Schacht, J. P. (2016). COMT val158met moderation of dopaminergic drug effects on cognitive function: a critical review. The Pharmacogenomics Journal, 16(5), 430–438. https://doi.org/10.1038/tpj.2016.43

Schafer, R. J., & Moore, T. (2011). Selective attention from voluntary control of neurons in prefrontal cortex. Science, 332, 1568–1571. https://doi.org/10.1126/science.1199892

Schall, J. D. (2009). Frontal Eye Fields. Springer, Berlin, Heidelberg.

Schouwenburg, M. R. van, Sligte, I. G., Giffin, M. R., Günther, F., Koster, D., Spronkers, F. S., … Slagter, H. A. (2019). Effects of mid-frontal brain stimulation on sustained attention. bioRxiv, 641498. https://doi.org/10.1101/641498

Schouwenburg, M. R. van, Sörensen, L. K. A., Klerk, R. de, Reteig, L. C., & Slagter, H. A. (2018). No Differential Effects of Two Different Alpha-Band Electrical Stimulation Protocols Over Fronto-Parietal Regions on Spatial Attention. Frontiers in Neuroscience, 12, 433. https://doi.org/10.3389/fnins.2018.00433

Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47, 609–612. https://doi.org/10.1016/j.jrp.2013.05.009

Schultz, W. (2007). Multiple Dopamine Functions at Different Time Courses. Annual Review of Neuroscience, 30(1), 259–288. https://doi.org/10.1146/annurev.neuro.28.061604.135722

Seli, P., Cheyne, J. A., Xu, M., Purdon, C., & Smilek, D. (2015). Motivation, intentionality, and mind wandering: Implications for assessments of task-unrelated thought. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(5), 1417–1425. https://doi.org/10.1037/xlm0000116

Seli, P., Schacter, D. L., Risko, E. F., & Smilek, D. (2017). Increasing participant motivation reduces rates of intentional and unintentional mind wandering. Psychological Research, 1–13. https://doi.org/10.1007/s00426-017-0914-2

Sescousse, G., Ligneul, R., Holst, R. J. van, Janssen, L. K., Boer, F. de, Janssen, M., … Cools, R. (2018). Spontaneous eye blink rate and dopamine synthesis capacity: preliminary evidence for an absence of positive correlation. European Journal of Neuroscience, 47(9), 1081–1086. https://doi.org/10.1111/ejn.13895

Sheldon, S. S., & Mathewson, K. E. (2018). Does 10-Hz cathodal oscillating current of the parieto-occipital lobe modulate target detection? Frontiers in Neuroscience, 12, 83. https://doi.org/10.3389/fnins.2018.00083

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420–428. https://doi.org/10.1037/0033-2909.86.2.420

Siegel, M., & Donner, T. H. (2010). Linking band-limited cortical activity to fMRI and behavior. In Simultaneous eeg and fMRI. Recording, analysis and application (pp. 1–23). https://doi.org/10.1093/acprof:oso/9780195372731.003.0017

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11), 1359–1366. https://doi.org/10.1177/0956797611417632

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2012). A 21 Word Solution. Dialogue, the Official Newsletter of the Society for Personality and Social Psychology, 1–4. https://doi.org/10.2139/ssrn.2160588

Simmons, J. P., & Simonsohn, U. (2017). Power Posing: P-Curving the Evidence. Psychological Science, 28(5), 687–693. https://doi.org/10.1177/0956797616658563

Simonsohn, U. (2015). Small telescopes: Detectability and the evaluation of replication results. Psychological Science, 26(5), 559–569. https://doi.org/http://dx.doi.org/10.2139/ssrn.2259879

Simonsohn, U. (2018). Two Lines: A Valid Alternative to the Invalid Testing of U-Shaped Relationships with Quadratic Regressions. Advances in Methods and Practices in Psychological Science, 1(4), 538–555. https://doi.org/doi.org/10.1177/251524591880575

Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). P -Curve: A Key to the File-Drawer. Journal of Experimental Psychology: General, 143(2), 534–547. https://doi.org/10.1037/a0033242

Singmann, H., Bolker, B., Westfall, J., & Aust, F. (2018). Afex: Analysis of factorial experiments. Retrieved from https://CRAN.R-project.org/package=afex

Slagter, H. A., & Georgopoulou, K. (2013). Distractor inhibition predicts individual differences in recovery from the attentional blink. PLOS ONE, 8(5), e64681. https://doi.org/10.1371/journal.pone.0064681

Slagter, H. A., Johnstone, T., Beets, I. A., & Davidson, R. J. (2010). Neural competition for conscious representation across time: An fMRI study. PLoS ONE, 5(5), e10556. https://doi.org/10.1371/journal.pone.0010556

Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J. M., & Davidson, R. J. (2007). Mental training affects distribution of limited brain resources. PLoS Biology, 5(6), e138. https://doi.org/10.1371/journal.pbio.0050138

Slagter, H. A., Lutz, A., Greischar, L. L., Nieuwenhuis, S., & Davidson, R. J. (2009). Theta phase synchrony and conscious target perception: impact of intensive mental training. Journal of Cognitive Neuroscience, 21(8), 1536–1549. https://doi.org/10.1162/jocn.2009.21125

Slagter, H. A., Mazaheri, A., Reteig, L. C., Smolders, R., Figee, M., Mantione, M., … Denys, D. (2017). Contributions of the Ventral Striatum to Conscious Perception: An Intracranial EEG Study of the Attentional Blink. Journal of Neuroscience, 37(5), 1081–1089. https://doi.org/10.1523/JNEUROSCI.2282-16.2016

Slagter, H. A., Prinssen, S., Reteig, L. C., & Mazaheri, A. (2016). Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. NeuroImage, 125, 25–35. https://doi.org/10.1016/j.neuroimage.2015.09.058

Slagter, H. A., Tomer, R., Christian, B. T., Fox, A. S., Colzato, L. S., King, C. R., … Davidson, R. J. (2012). PET evidence for a role for striatal dopamine in the attentional blink: Functional implications. Journal of Cognitive Neuroscience, 24(9), 1932–1940. https://doi.org/10.1162/jocn_a_00255

Slagter, H. A., Wouwe, N. C. van, Kanoff, K., Grasman, R. P. P. P., Claassen, D. O., Wildenberg, W. P. van den, & Wylie, S. A. (2016). Dopamine and temporal attention: An attentional blink study in Parkinson’s disease patients on and off medication. Neuropsychologia, 91, 407–414. https://doi.org/10.1016/j.neuropsychologia.2016.09.006

Sloterdijk, P. (2001). Domestikation des Seins. In Nicht gerettet: Versuche nach heidegger. Frankfurt am Main: Suhrkamp Verlag.

Sloterdijk, P. (2009). Du mußt dein Leben ändern. Berlin: Suhrkamp Verlag.

Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychological Bulletin, 132(6), 946–958. https://doi.org/10.1037/0033-2909.132.6.946

Smit, M., Schutter, D. J. L. G., Nijboer, T. C. W., Visser-Meily, J. M. A., Kappelle, L. J., Kant, N., … Dijkerman, H. C. (2015). Transcranial direct current stimulation to the parietal cortex in hemispatial neglect: A feasibility study. Neuropsychologia, 74, 152–161. https://doi.org/10.1016/j.neuropsychologia.2015.04.014

Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23 Suppl 1, S208–19. https://doi.org/10.1016/j.neuroimage.2004.07.051

Snowball, A., Tachtsidis, I., Popescu, T., Thompson, J., Delazer, M., Zamarian, L., … Cohen Kadosh, R. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23(11), 987–992. https://doi.org/10.1016/j.cub.2013.04.045

Sparing, R., Thimm, M., Hesse, M. D., Küst, J., Karbe, H., & Fink, G. R. (2009). Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain, 132(Pt 11), 3011–3020. https://doi.org/10.1093/brain/awp154

Spence, J. R., & Stanley, D. J. (2016). Prediction interval: What to expect when you’re expecting … a replication. PLOS ONE, 11(9), e0162874. https://doi.org/10.1371/journal.pone.0162874

Spieser, L., Wildenberg, W. P. van den, Hasbroucq, T., Ridderinkhof, K. R., & Burle, B. (2015). Controlling Your Impulses: Electrical Stimulation of the Human Supplementary Motor Complex Prevents Impulsive Errors. Journal of Neuroscience, 35(7), 3010–3015. https://doi.org/10.1523/JNEUROSCI.1642-14.2015

Stagg, C. J., Antal, A., & Nitsche, M. A. (2018). Physiology of transcranial direct current stimulation. Journal of ECT, 34(3), 144–152. https://doi.org/10.1097/YCT.0000000000000510

Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience, 29(16), 5202–5206. https://doi.org/10.1523/JNEUROSCI.4432-08.2009

Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53. https://doi.org/10.1177/1073858410386614

Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31(1), 137–149. https://doi.org/10.3758/BF03207704

Stanley, D. (2016). PredictionInterval: Prediction interval functions for assessing replication study results. Retrieved from https://CRAN.R-project.org/package=predictionInterval

Steenbergen, L., Sellaro, R., Hommel, B., Lindenberger, U., Kühn, S., & Colzato, L. S. (2016). “Unfocus” on foc.us: commercial tDCS headset impairs working memory. Experimental Brain Research, 234(3), 637–643. https://doi.org/10.1007/s00221-015-4391-9

Stiegler, B. (1998). Technics and time: The fault of Epimetheus. Stanford University Press.

Stone, D. B., & Tesche, C. D. (2009). Transcranial direct current stimulation modulates shifts in global/local attention. Neuroreport, 20(12), 1115–1119. https://doi.org/10.1097/WNR.0b013e32832e9aa2

Strube, W., Bunse, T., Nitsche, M. A., Nikolaeva, A., Palm, U., Padberg, F., … Hasan, A. (2016). Bidirectional variability in motor cortex excitability modulation following 1 mA transcranial direct current stimulation in healthy participants. Physiological Reports, 4(15), e12884. https://doi.org/10.14814/phy2.12884

Sumner, P. (2011). Determinants of saccade latency. In S. Liversedge, I. Gilchrist, & S. Everling (Eds.), The oxford handbook of eye movements (pp. 413–424). Oxford University Press.

Sunwoo, H., Kim, Y. H., Chang, W. H., Noh, S., Kim, E. J., & Ko, M.-H. (2013). Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect. Neuroscience Letters, 554, 94–98. https://doi.org/10.1016/j.neulet.2013.08.064

Talsma, D., Mulckhuyse, M., Slagter, H. A., & Theeuwes, J. (2007). Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding. Brain Research, 1178(1), 92–105. https://doi.org/10.1016/j.brainres.2007.07.099

Talsma, L. J., Broekhuizen, J. A., Huisman, J., & Slagter, H. A. (2018). No evidence that baseline prefrontal cortical excitability (3T-MRS) predicts the effects of prefrontal tDCS on WM performance. Frontiers in Neuroscience, 12, 481. https://doi.org/10.3389/fnins.2018.00481

Talsma, L. J., Kroese, H. A., & Slagter, H. A. (2017). Boosting Cognition: Effects of Multiple-Session Transcranial Direct Current Stimulation on Working Memory. Journal of Cognitive Neuroscience, 29(4), 755–768. https://doi.org/10.1162/jocn_a_01077

Tanaka, T., Takano, Y., Tanaka, S., Hironaka, N., Kobayashi, K., Hanakawa, T., … Honda, M. (2013). Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum. Frontiers in Systems Neuroscience, 7, 6. https://doi.org/10.3389/fnsys.2013.00006

Taylor, M., & Creelman, C. (1967). PEST: Efficient Estimates on Probability Functions. The Journal of the Acoustic Society of America, 41(4), 782–787. https://doi.org/10.1121/1.1910407

Terney, D., Chaieb, L., Moliadze, V., Antal, A., & Paulus, W. (2008). Increasing Human Brain Excitability by Transcranial High-Frequency Random Noise Stimulation. Journal of Neuroscience, 28(52), 14147–14155. https://doi.org/10.1523/JNEUROSCI.4248-08.2008

Terzuolo, C., & Bullock, T. (1956). Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proceedings of the National Academy of Sciences, 42, 687–694.

Thickbroom, G., Stell, R., & Mastaglia, F. (1996). Transcranial magnetic stimulation of the human frontal eye field. Journal of the Neurological Sciences, 144, 114–118. https://doi.org/10.1016/S0022-510X(96)00194-3

Thielscher, A., Antunes, A., & Saturnino, G. B. (2015). Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 222–225. https://doi.org/10.1109/EMBC.2015.7318340

Thomson, D. R., Besner, D., & Smilek, D. (2015a). A Resource-Control Account of Sustained Attention: Evidence From Mind-Wandering and Vigilance Paradigms. Perspectives on Psychological Science, 10(1), 82–96. https://doi.org/10.1177/1745691614556681

Thomson, D. R., Besner, D., & Smilek, D. (2016). A critical examination of the evidence for sensitivity loss in modern vigilance tasks. Psychological Review, 123(1), 70–83. https://doi.org/10.1037/rev0000021

Thomson, D. R., Ralph, B. C. W., Besner, D., & Smilek, D. (2015b). The more your mind wanders, the smaller your attentional blink: An individual differences study. Quarterly Journal of Experimental Psychology, 68(1), 181–191. https://doi.org/10.1080/17470218.2014.940985

Thut, G., Bergmann, T. O., Fröhlich, F., Soekadar, S. R., Brittain, J. S., Valero-Cabré, A., … Herrmann, C. S. (2017). Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper. Clinical Neurophysiology, 128(5), 843–857. https://doi.org/10.1016/j.clinph.2017.01.003

Thut, G., Nietzel, A., Brandt, S. A., & Pascual-Leone, A. (2006). Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. Journal of Neuroscience, 26(37), 9494–9502. https://doi.org/10.1523/JNEUROSCI.0875-06.2006

Tommaso, M. de, Invitto, S., Ricci, K., Lucchese, V., Delussi, M., Quattromini, P., … Cicinelli, E. (2014). Effects of anodal TDCS stimulation of left parietal cortex on visual spatial attention tasks in men and women across menstrual cycle. Neuroscience Letters, 574, 21–25. https://doi.org/10.1016/j.neulet.2014.05.014

Tootell, R. B., Hadjikhani, N., Hall, E. K., Marrett, S., Vanduffel, W., Vaughan, J. T., & Dale, A. M. (1998). The retinotopy of visual spatial attention. Neuron, 21(6), 1409–1422. https://doi.org/10.1016/S0896-6273(00)80659-5

Tremblay, S., Lepage, J.-F., Latulipe-Loiselle, A., Fregni, F., Pascual-Leone, A., & Théoret, H. (2014). The uncertain outcome of prefrontal tDCS. Brain Stimulation, 7(6), 773–783. https://doi.org/10.1016/j.brs.2014.10.003

Tseng, L.-Y., Tseng, P., Liang, W.-K., Hung, D. L., Tzeng, O. J., Muggleton, N. G., & Juan, C.-H. (2014). The role of superior temporal sulcus in the control of irrelevant emotional face processing : A transcranial direct current stimulation study. Neuropsychologia, 64, 124–133. https://doi.org/10.1016/j.neuropsychologia.2014.09.015

Tseng, P., Wang, M. C., Lo, Y. H., & Juan, C. H. (2018). Anodal and cathodal tDCS over the right frontal eye fields impacts spatial probability processing differently in pro- and anti-saccades. Frontiers in Neuroscience, 12, 421. https://doi.org/10.3389/fnins.2018.00421

Turgut, N., Miranda, M., Kastrup, A., Eling, P., & Hildebrandt, H. (2016). tDCS combined with optokinetic drift reduces egocentric neglect in severely impaired post-acute patients. Neuropsychological Rehabilitation, 2011(August). https://doi.org/10.1080/09602011.2016.1202120

Turi, Z., Csifcsák, G., Boayue, N. M., Aslaksen, P., Antal, A., Paulus, W., … Mittner, M. (2019). Blinding is compromised for transcranial direct current stimulation at 1 mA for 20 min in young healthy adults. European Journal of Neuroscience, 1–8. https://doi.org/10.1111/ejn.14403

Ueno, T., Fastrich, G. M., & Murayama, K. (2016). Meta-analysis to integrate effect sizes within an article: Possible misuse and Type I error inflation. Journal of Experimental Psychology: General, 145(5), 643–654. https://doi.org/10.1037/xge0000159

Umemoto, A., Inzlicht, M., & Holroyd, C. B. (2018). Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2018.06.010

Unsworth, N., Robison, M. K., & Miller, A. L. (2019). Individual differences in baseline oculometrics: Examining variation in baseline pupil diameter, spontaneous eye blink rate, and fixation stability. Cognitive, Affective, & Behavioral Neuroscience, 1–20. https://doi.org/10.3758/s13415-019-00709-z

Vallar, G., & Perani, D. (1986). The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia, 24(5), 609–622. https://doi.org/10.1016/0028-3932(86)90001-1

VanRullen, R., Busch, N. A., Drewes, J., & Dubois, J. (2011). Ongoing EEG phase as a trial-by-trial predictor of perceptual and attentional variability. Frontiers in Psychology, 2, 60. https://doi.org/10.3389/fpsyg.2011.00060

Veniero, D., Benwell, C. S., Ahrens, M. M., & Thut, G. (2017). Inconsistent effects of parietal \(\alpha\)-tACS on Pseudoneglect across two experiments: A failed internal replication. Frontiers in Psychology, 8, 952. https://doi.org/10.3389/fpsyg.2017.00952

Verhagen, J., & Wagenmakers, E.-J. (2014). Bayesian tests to quantify the result of a replication attempt. Journal of Experimental Psychology: General, 143(4), 1457–1475. https://doi.org/10.1037/a0036731

Verhagen, L., Gallea, C., Folloni, D., Constans, C., Jensen, D. E., Ahnine, H., … Sallet, J. (2019). Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife, 8, 1–28. https://doi.org/10.7554/elife.40541

Vernet, M., Quentin, R., Chanes, L., Mitsumasu, A., & Valero-Cabré, A. (2014). Frontal eye field, where art thou? Anatomy, function, and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations. Frontiers in Integrative Neuroscience, 8(August), 66. https://doi.org/10.3389/fnint.2014.00066

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. Retrieved from http://www.jstatsoft.org/v36/i03/

Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., … Berényi, A. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-02928-3

Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin and Review, 25(1), 58–76. https://doi.org/10.3758/s13423-017-1323-7

Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin and Review, 25(1), 35–57. https://doi.org/10.3758/s13423-017-1343-3

Wagenmakers, E.-J., Verhagen, J., & Ly, A. (2016). How to quantify the evidence for the absence of a correlation. Behavior Research Methods, 48, 413–426. https://doi.org/10.3758/s13428-015-0593-0

Walsh, V. Q. (2013). Ethics and social risks in brain stimulation. Brain Stimulation, 6(5), 715–717. https://doi.org/10.1016/j.brs.2013.08.001

Wang, H.-T., Smallwood, J., Mourao-Miranda, J., Xia, C. H., Satterthwaite, T. D., Bassett, D. S., & Bzdok, D. (2018). Finding the needle in high-dimensional haystack: A tutorial on canonical correlation analysis. arXiv, 1812.02598. Retrieved from http://arxiv.org/abs/1812.02598

Warm, J. S., Parasuraman, R., & Matthews, G. (2008). Vigilance Requires Hard Mental Work and Is Stressful. Human Factors, 50(3), 433–441. https://doi.org/10.1518/001872008X312152

Wascher, E., Rasch, B., Sänger, J., Hoffmann, S., Schneider, D., Rinkenauer, G., … Gutberlet, I. (2014). Frontal theta activity reflects distinct aspects of mental fatigue. Biological Psychology, 96(1), 57–65. https://doi.org/10.1016/j.biopsycho.2013.11.010

Weiss, M., & Lavidor, M. (2012). When less is more: evidence for a facilitative cathodal tDCS effect in attentional abilities. Journal of Cognitive Neuroscience, 24(9), 1826–1833. https://doi.org/10.1162/jocn_a_00248

Wickham, H. (2017). Tidyverse: Easily install and load the ’tidyverse’. Retrieved from https://CRAN.R-project.org/package=tidyverse

Wickham, H., & Grolemund, G. (2017). R for Data Science: Import, Tidy, Transform, Visualize, and Model Data (1st editio). Sebastopol, Canada: O’Reilly Media, Inc.

Wiegand, A., Nieratschker, V., & Plewnia, C. (2016). Genetic Modulation of Transcranial Direct Current Stimulation Effects on Cognition. Frontiers in Human Neuroscience, 10, 651. https://doi.org/10.3389/fnhum.2016.00651

Wieneke, G. H., Deinema, C. H. A., Spoelstra, P., Storm van Leeuwen, W., & Versteeg, H. (1980). Normative spectral data on alpha rhythm in male adults. Electroencephalography and Clinical Neurophysiology, 49(5-6), 636–645. https://doi.org/10.1016/0013-4694(80)90404-6

Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475. https://doi.org/10.1016/j.brs.2014.02.003

Wilcox, R. R., & Erceg-Hurn, D. M. (2012). Comparing two dependent groups via quantiles. Journal of Applied Statistics, 39(12), 2655–2664. https://doi.org/10.1080/02664763.2012.724665

Wilke, C. O. (2019). Cowplot: Streamlined plot theme and plot annotations for ’ggplot2’. Retrieved from https://github.com/wilkelab/cowplot

Willems, C., & Martens, S. (2016). Time to see the bigger picture: Individual differences in the attentional blink. Psychonomic Bulletin and Review, 23(5), 1289–1299. https://doi.org/10.3758/s13423-015-0977-2

Wokke, M. E., Talsma, L. J., & Vissers, M. E. (2015). Biasing neural network dynamics using non-invasive brain stimulation. Frontiers in Systems Neuroscience, 8, 246. https://doi.org/10.3389/fnsys.2014.00246

Wolfe, J. M. (1998). Visual Search. In H. Pashler (Ed.), Attention. https://doi.org/10.1016/j.tics.2010.12.001

Womelsdorf, T., & Fries, P. (2007). The role of neuronal synchronization in selective attention. Current Opinion in Neurobiology, 17(2), 154–160. https://doi.org/10.1016/j.conb.2007.02.002

Worden, M. S., Foxe, J. J., Wang, N., & Simpson, G. V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific alpha-band electroencephalography increases over occipital cortex. Journal of Neuroscience, 20(6), 1–6. https://doi.org/10.1523/JNEUROSCI.20-06-j0002.2000

Wright, J. M., & Krekelberg, B. (2014). Transcranial direct current stimulation over posterior parietal cortex modulates visuospatial localization. Journal of Vision, 14, 1–15. https://doi.org/10.1167/14.9.5.doi

Wright, R. D., & Ward, L. M. (2008). Orienting of Attention. New York: Oxford University Press.

Wurzman, R., Hamilton, R., Pascual-Leone, A., & Fox, M. (2016). An open letter concerning do-it-yourself (DIY) users of transcranial direct current stimulation (tDCS). Annals of Neurology, 1–4. https://doi.org/10.1002/ana.24689

Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Retrieved from https://yihui.name/knitr/

Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R Markdown: The Definitive Guide. https://doi.org/10.1016/B978-0-12-814447-3.00041-0

Yavari, F., Jamil, A., Mosayebi Samani, M., Vidor, L. P., & Nitsche, M. A. (2018). Basic and functional effects of transcranial Electrical Stimulation (tES)—An introduction. Neuroscience and Biobehavioral Reviews, 85(June 2017), 81–92. https://doi.org/10.1016/j.neubiorev.2017.06.015

Yi, Y. G., Chun, M. H., Do, K. H., Sung, E. J., Kwon, Y. G., & Kim, D. Y. (2016). The Effect of Transcranial Direct Current Stimulation on Neglect Syndrome in Stroke Patients. Annals of Rehabilitation Medicine, 40(2), 223–229. https://doi.org/10.5535/arm.2016.40.2.223

Zhu, H. (2019). KableExtra: Construct complex table with ’kable’ and pipe syntax. Retrieved from https://CRAN.R-project.org/package=kableExtra

Zwaan, R. A., Etz, A., Lucas, R. E., & Donnellan, M. B. (2018). Making replication mainstream. Behavioral and Brain Sciences, e120. https://doi.org/10.1017/S0140525X17001972