## ── Attaching packages ────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.0     ✔ purrr   0.2.5
## ✔ tibble  1.4.2     ✔ dplyr   0.7.8
## ✔ tidyr   0.8.2     ✔ stringr 1.3.1
## ✔ readr   1.1.1     ✔ forcats 0.3.0
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## Loading required package: coda
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
## 
##     expand
## ************
## Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).
## 
## Type BFManual() to open the manual.
## ************
## 
## Attaching package: 'nlme'
## The following object is masked from 'package:dplyr':
## 
##     collapse
## here() starts at /Volumes/psychology$/Researchers/reteig/MFBrain
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: OS X El Capitan 10.11.6
## 
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] here_0.1               apa_0.3.0              knitr_1.21            
##  [4] broom_0.5.1            nlme_3.1-137           BayesFactor_0.9.12-4.2
##  [7] Matrix_1.2-14          coda_0.19-2            ez_4.4-0              
## [10] forcats_0.3.0          stringr_1.3.1          dplyr_0.7.8           
## [13] purrr_0.2.5            readr_1.1.1            tidyr_0.8.2           
## [16] tibble_1.4.2           ggplot2_3.1.0          tidyverse_1.2.1       
## 
## loaded via a namespace (and not attached):
##  [1] httr_1.3.1         jsonlite_1.6       splines_3.5.1     
##  [4] carData_3.0-2      modelr_0.1.2       gtools_3.8.1      
##  [7] assertthat_0.2.0   cellranger_1.1.0   yaml_2.2.0        
## [10] pillar_1.3.1       backports_1.1.3    lattice_0.20-35   
## [13] glue_1.3.0         digest_0.6.18      rvest_0.3.2       
## [16] minqa_1.2.4        colorspace_1.3-2   htmltools_0.3.6   
## [19] plyr_1.8.4         pkgconfig_2.0.2    haven_1.1.2       
## [22] mvtnorm_1.0-8      scales_1.0.0       openxlsx_4.1.0    
## [25] rio_0.5.10         lme4_1.1-19        MatrixModels_0.4-1
## [28] mgcv_1.8-24        generics_0.0.2     car_3.0-2         
## [31] withr_2.1.2        pbapply_1.3-4      lazyeval_0.2.1    
## [34] cli_1.0.1          magrittr_1.5       crayon_1.3.4      
## [37] readxl_1.1.0       evaluate_0.12      MASS_7.3-50       
## [40] xml2_1.2.0         foreign_0.8-70     tools_3.5.1       
## [43] data.table_1.11.8  hms_0.4.2          munsell_0.5.0     
## [46] zip_1.0.0          bindrcpp_0.2.2     compiler_3.5.1    
## [49] rlang_0.3.0.1      grid_3.5.1         nloptr_1.2.1      
## [52] rstudioapi_0.8     rmarkdown_1.11     gtable_0.2.0      
## [55] abind_1.4-5        curl_3.2           reshape2_1.4.3    
## [58] R6_2.3.0           lubridate_1.7.4    rprojroot_1.3-2   
## [61] bindr_0.1.1        stringi_1.2.4      parallel_3.5.1    
## [64] Rcpp_1.0.0         tidyselect_0.2.5   xfun_0.4

Behavioral data per trial

Clean

## # A tibble: 50,400 x 6
##    participant time  target_present response    RT outcome          
##    <fct>       <fct>          <int>    <int> <int> <chr>            
##  1 S01         1                  0        0     0 Correct rejection
##  2 S01         1                  0        0     0 Correct rejection
##  3 S01         1                  0        0     0 Correct rejection
##  4 S01         1                  0        0     0 Correct rejection
##  5 S01         1                  0        0     0 Correct rejection
##  6 S01         1                  0        0     0 Correct rejection
##  7 S01         1                  0        0     0 Correct rejection
##  8 S01         1                  1        1   467 Hit              
##  9 S01         1                  0        0     0 Correct rejection
## 10 S01         1                  0        0     0 Correct rejection
## # ... with 50,390 more rows

For each participant and trial, we now have:

  • participant: participant ID (e.g. S01)
  • time: factor that splits data into 10-minute time periods (1-8)
  • target_present: 1 if target (short line) was shown; 0 otherwise (long line)
  • response: 1 if participant responded a target was present; 0 otherwise (no target present)
  • RT: response time in milliseconds
  • outcome: either Hit, Miss, False alarm or Correct rejection

Response time data

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 78708390.25 1785243.8 881.766 0.000 * 0.973 0.978
time 7 140 48285.99 376627.1 2.564 0.016 * 0.022 0.114
Effect W p p<.05
2 time 0.048 0.002 *
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.546 0.047 * 0.691 0.033 *

Main effect of time on RT: F(3.82, 76.45) = 2.56, p = .047, \(\eta^2_p\) = .11

Follow-up tests

condition estimate statistic p.value parameter conf.low conf.high method alternative d
1v6 -44.470 -2.786 0.011 20 -77.767 -11.172 Paired t-test two.sided 0.608
1v7 -21.999 -1.577 0.130 20 -51.098 7.100 Paired t-test two.sided 0.344
1v8 -48.188 -2.307 0.032 20 -91.754 -4.622 Paired t-test two.sided 0.503
6v7 22.470 1.447 0.163 20 -9.923 54.864 Paired t-test two.sided 0.316
condition bf
1v6 4.52
1v7 0.66
1v8 1.95
6v7 0.56
  • Difference in RT between block 6 and block 7: t(20) = 1.45, p = .163, d = 0.32, BF01 = 1.78

Signal detection data (Hit rate, False alarm rate, A’)

Trial counts per type
outcome mean min max sd
Correct rejection 234.6 207 240 6.3
False alarm 6.6 1 33 6.3
Hit 32.7 10 54 10.5
Miss 27.3 6 50 10.5

Sensitivity (A’)

RM ANOVA
Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 128.222 0.155 16524.665 0 * 0.998 0.999
time 7 140 0.053 0.143 7.468 0 * 0.152 0.272
Effect W p p<.05
2 time 0.011 0 *
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.357 0.001 * 0.412 0 *

Main effect of time on A’: F(2.50, 49.96) = 7.47, p < .001, \(\eta^2_p\) = .27

Paired t-tests
condition estimate statistic p.value parameter conf.low conf.high method alternative d
1v6 0.052 5.752 0.000 20 0.033 0.071 Paired t-test two.sided 1.255
1v7 0.029 2.400 0.026 20 0.004 0.053 Paired t-test two.sided 0.524
1v8 0.062 4.232 0.000 20 0.031 0.092 Paired t-test two.sided 0.923
6v7 -0.024 -2.509 0.021 20 -0.044 -0.004 Paired t-test two.sided 0.547
condition bf
1v6 1791.10
1v7 2.28
1v8 79.19
6v7 2.75
  • Difference in A’ between block 1 and block 7: t(20) = 2.40, p = .026, d = 0.52, BF10 = 2.28
  • Difference in A’ between block 1 and block 8: t(20) = 4.23, p < .001, d = 0.92, BF10 = 79.2
  • Difference in A’ between block 6 and block 7: t(20) = -2.51, p = .021, d = -0.55, BF10 = 2.75

Hit rate

RM ANOVA
Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 49.926 2.413 413.780 0 * 0.921 0.954
time 7 140 0.813 1.859 8.745 0 * 0.160 0.304
Effect W p p<.05
2 time 0.01 0 *
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.349 0 * 0.402 0 *

Main effect of time on Hit rate: F(2.45, 48.92) = 8.74, p < .001, \(\eta^2_p\) = .30

Paired t-tests
condition estimate statistic p.value parameter conf.low conf.high method alternative d
1v6 0.213 6.331 0.000 20 0.143 0.284 Paired t-test two.sided 1.382
1v7 0.137 2.749 0.012 20 0.033 0.240 Paired t-test two.sided 0.600
1v8 0.236 4.273 0.000 20 0.121 0.351 Paired t-test two.sided 0.932
6v7 -0.077 -2.171 0.042 20 -0.151 -0.003 Paired t-test two.sided 0.474
condition bf
1v6 5667.76
1v7 4.23
1v8 86.24
6v7 1.56
  • Difference in Hit rate between block 6 and block 7: t(20) = -2.17, p = .042, d = -0.47, BF10 = 1.56

False alarm rate

RM ANOVA
Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 0.086 0.064 26.816 0.00 * 0.443 0.573
time 7 140 0.005 0.044 2.302 0.03 * 0.045 0.103
Effect W p p<.05
2 time 0.015 0 *
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.441 0.084 0.53 0.071

Main effect of time on false alarm rate: F(3.08, 61.69) = 2.30, p = .084, \(\eta^2_p\) = .10

Paired t-tests
condition estimate statistic p.value parameter conf.low conf.high method alternative d
1v6 0.011 1.220 0.237 20 -0.008 0.030 Paired t-test two.sided 0.266
1v7 0.017 2.910 0.009 20 0.005 0.030 Paired t-test two.sided 0.635
1v8 0.007 0.852 0.405 20 -0.011 0.025 Paired t-test two.sided 0.186
6v7 0.006 1.095 0.286 20 -0.006 0.018 Paired t-test two.sided 0.239
condition bf
1v6 0.44
1v7 5.69
1v8 0.31
6v7 0.39
  • Difference in false alarm rate between block 6 and block 7: t(20) = 1.10, p = .286, d = 0.24, BF10 = 2.59

Ratings data

Clean

## # A tibble: 210 x 4
##    participant time  motivation aversion
##    <fct>       <fct>      <int>    <int>
##  1 S01         begin          6        3
##  2 S01         1              7        3
##  3 S01         2              7        2
##  4 S01         3              6        5
##  5 S01         4              4        5
##  6 S01         5              3        5
##  7 S01         6              3        6
##  8 S01         post           5        5
##  9 S01         7              6        4
## 10 S01         8              4        6
## # ... with 200 more rows

For each participant, we now have:

  • participant: participant ID (e.g. S01)
  • time: 10 time point when rating was taken. 8 are numbers, indicating ratings after a block of 10 minutes (e.g. 6 is after 60 minutes of task performance). begin is the rating before the task started; post is the rating directly after the motivation instruction that was shown after block 6.
  • motivation: 7-point scale rating of aversion to continue the task (1 is no aversion, 7 is strongest aversion)
  • aversion: 7-point scale rating of motivation to continue the task (1 is no motivation, 7 is strongest motivation)

Motivation

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 4004.233 208.467 384.161 0 * 0.899 0.951
time 9 180 86.576 243.724 7.104 0 * 0.161 0.262
Effect W p p<.05
2 time 0.001 0 *
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.432 0 * 0.55 0 *

Main effect of time on motivation: F(3.89, 77.80) = 7.10, p < .001, \(\eta^2_p\) = .26

Paired t-tests

condition estimate statistic p.value parameter conf.low conf.high method alternative d
begin vs. 6 1.524 3.553 0.002 20 0.629 2.418 Paired t-test two.sided 0.775
begin vs. post -0.571 -1.743 0.097 20 -1.255 0.112 Paired t-test two.sided 0.380
begin vs. 8 0.762 1.817 0.084 20 -0.113 1.636 Paired t-test two.sided 0.397
6 vs. post -2.095 -5.139 0.000 20 -2.946 -1.245 Paired t-test two.sided 1.121
condition bf
begin vs. 6 19.89
begin vs. post 0.82
begin vs. 8 0.91
6 vs. post 514.52
  • Difference in motivation between begin and block 6: t(20) = 3.55, p = .002, d = 0.78, BF10 = 19.9
  • Difference in motivation between block 6 and post: t(20) = -5.14, p < .001, d = -1.12, BF10 = 515
  • Difference in motivation between begin and post: t(20) = -1.74, p = .097, d = -0.38, BF01 = 1.21
  • Difference in motivation between begin and block 8: t(20) = 1.82, p = .084, d = 0.40, BF01 = 1.09

Aversion

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 4109.719 443.981 185.130 0 * 0.867 0.903
time 9 180 119.186 188.114 12.672 0 * 0.159 0.388
Effect W p p<.05
2 time 0 0 *
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.384 0 * 0.474 0 *

Main effect of time on aversion: F(3.46, 69.17) = 12.67, p < .001, \(\eta^2_p\) = .39

Paired t-tests

condition estimate statistic p.value parameter conf.low conf.high method alternative d
begin vs. 6 -2.667 -6.162 0.000 20 -3.569 -1.764 Paired t-test two.sided 1.345
begin vs. post -2.000 -4.369 0.000 20 -2.955 -1.045 Paired t-test two.sided 0.953
begin vs. 8 -2.381 -4.591 0.000 20 -3.463 -1.299 Paired t-test two.sided 1.002
6 vs. post 0.667 3.162 0.005 20 0.227 1.106 Paired t-test two.sided 0.690
condition bf
begin vs. 6 4057.15
begin vs. post 105.14
begin vs. 8 166.27
6 vs. post 9.20
  • Difference in aversion between begin and block 6: t(20) = -6.16, p < .001, d = -1.34, BF10 = 4057
  • Difference in aversion between block 6 and post: t(20) = 3.16, p = .005, d = 0.69, BF10 = 9.2

EEG data

Theta - ITPC

Load the files with EEG data for statistics, written out from MATLAB

## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]

Correct rejections (10 minutes)

## Joining, by = c("subnum", "X26")
## Joining, by = c("subnum", "X26")

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 64.538 9.348 138.079 0.000 * 0.836 0.873
time 7 140 0.161 0.721 4.463 0.000 * 0.013 0.182
region 2 40 2.328 2.227 20.907 0.000 * 0.156 0.511
time:region 14 280 0.030 0.338 1.799 0.038 * 0.002 0.083
Effect W p p<.05
2 time 0.076 0.019 *
3 region 0.739 0.057
4 time:region 0.000 0.159
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.547 0.003 * 0.692 0.001 *
3 region 0.793 0.000 * 0.850 0.000 *
4 time:region 0.552 0.084 0.934 0.043 *

Main effect of time on theta ITPC: F(3.83, 76.52) = 4.46, p = .003, \(\eta^2_p\) = .18

Paired t-tests

region BF estimate statistic p.value parameter conf.low conf.high method alternative d
PO7P5P7 20.073 -0.046 -3.558 0.002 20 -0.072 -0.019 Paired t-test two.sided 0.776
PO8P6P8 1.086 -0.027 -1.936 0.067 20 -0.056 0.002 Paired t-test two.sided 0.422
FCzFC1FC2 8.643 -0.046 -3.130 0.005 20 -0.077 -0.015 Paired t-test two.sided 0.683
region BF
PO7P5P7 20.07
PO8P6P8 1.09
FCzFC1FC2 8.64
  • Difference in theta ITPC between block 6 and 7 in left PO electrodes: t(20) = -3.56, p = .002, d = -0.78, BF10 = 20.1
  • Difference in theta ITPC between block 6 and 7 in right PO electrodes: t(20) = -1.94, p = .067, d = -0.42, BF10 = 1.09
  • Difference in theta ITPC between block 6 and 7 in MF electrodes: t(20) = -3.13, p = .005, d = -0.68, BF10 = 8.64

Multilevel model

  • Response: A’
  • Fixed effect: ITPC
  • Random intercept: -
  • Random slope: -
  • Nesting structure: time points nested in subjects
  • Correlation structure: First-order autoregressive

rPO:

## Generalized least squares fit by REML
##   Model: a_prime ~ ITPC 
##   Data: . 
##   Subset: region == "PO8P6P8" 
##         AIC       BIC   logLik
##   -633.5932 -621.1452 320.7966
## 
## Correlation Structure: AR(1)
##  Formula: ~time | participant 
##  Parameter estimate(s):
##       Phi 
## 0.6963717 
## 
## Coefficients:
##                 Value  Std.Error  t-value p-value
## (Intercept) 0.8246873 0.01479529 55.73984   0e+00
## ITPC        0.1130090 0.02902639  3.89332   1e-04
## 
##  Correlation: 
##      (Intr)
## ITPC -0.89 
## 
## Standardized residuals:
##         Min          Q1         Med          Q3         Max 
## -2.46020657 -0.71526578 -0.02120056  0.60097948  2.05325350 
## 
## Residual standard error: 0.04632284 
## Degrees of freedom: 168 total; 166 residual

lPO:

## Generalized least squares fit by REML
##   Model: a_prime ~ ITPC 
##   Data: . 
##   Subset: region == "PO7P5P7" 
##         AIC       BIC   logLik
##   -627.6256 -615.1777 317.8128
## 
## Correlation Structure: AR(1)
##  Formula: ~time | participant 
##  Parameter estimate(s):
##       Phi 
## 0.7517676 
## 
## Coefficients:
##                 Value  Std.Error  t-value p-value
## (Intercept) 0.8432367 0.01326363 63.57510  0.0000
## ITPC        0.1145791 0.03688280  3.10657  0.0022
## 
##  Correlation: 
##      (Intr)
## ITPC -0.805
## 
## Standardized residuals:
##         Min          Q1         Med          Q3         Max 
## -2.49982851 -0.62840807  0.03004564  0.65998032  1.84162189 
## 
## Residual standard error: 0.0508978 
## Degrees of freedom: 168 total; 166 residual

MF:

## Generalized least squares fit by REML
##   Model: a_prime ~ ITPC 
##   Data: . 
##   Subset: region == "FCzFC1FC2" 
##         AIC       BIC   logLik
##   -635.6804 -623.2325 321.8402
## 
## Correlation Structure: AR(1)
##  Formula: ~time | participant 
##  Parameter estimate(s):
##       Phi 
## 0.7030903 
## 
## Coefficients:
##                 Value  Std.Error  t-value p-value
## (Intercept) 0.8254778 0.01400682 58.93401   0e+00
## ITPC        0.1469372 0.03558883  4.12874   1e-04
## 
##  Correlation: 
##      (Intr)
## ITPC -0.874
## 
## Standardized residuals:
##         Min          Q1         Med          Q3         Max 
## -2.32801071 -0.66794111  0.01643409  0.63781178  2.23474612 
## 
## Residual standard error: 0.04646776 
## Degrees of freedom: 168 total; 166 residual

Hits and misses (20 minutes)

## Joining, by = c("subnum", "X26")
## Joining, by = c("subnum", "X26")

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 83.4314806 6.2077650 268.797161 0.0000000 * 0.8855208 0.9307472
time 3 60 0.1643773 0.7534134 4.363537 0.0075997 * 0.0150112 0.1791011
region 2 40 1.3826828 1.7153602 16.121195 0.0000073 * 0.1136270 0.4463085
condition 1 20 1.8009405 0.6177012 58.311058 0.0000002 * 0.1430809 0.7446082
time:region 6 120 0.0329346 0.4527114 1.454994 0.1995046 0.0030442 0.0678161
time:condition 3 60 0.0292374 0.4203938 1.390952 0.2542835 0.0027034 0.0650252
region:condition 2 40 0.1092865 0.2652160 8.241321 0.0010067 * 0.0100307 0.2918178
time:region:condition 6 120 0.0194744 0.3533687 1.102212 0.3651112 0.0018023 0.0522321
Effect W p p<.05
2 time 0.5022246 0.0246778 *
3 region 0.8480515 0.2089350
5 time:region 0.4093961 0.7301661
6 time:condition 0.8781756 0.7870651
7 region:condition 0.7943573 0.1122408
8 time:region:condition 0.1647764 0.0456248 *
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.6811105 0.0185383 * 0.7594201 0.0148678 *
3 region 0.8680944 0.0000240 * 0.9433946 0.0000122 *
5 time:region 0.7535219 0.2172721 1.0007596 0.1995046
6 time:condition 0.9313545 0.2560163 1.0979803 0.2542835
7 region:condition 0.8294331 0.0021491 * 0.8951516 0.0016035 *
8 time:region:condition 0.6811810 0.3616961 0.8779956 0.3645042
  • Main effect of condition on theta ITPC: F(1, 20) = 58.31, p < .001, \(\eta^2_p\) = .74
  • Theta ITPC: time by condition interaction theta ITPC: F(3, 60) = 1.39, p = .254, \(\eta^2_p\) = .07

Theta - Power

Load the files with EEG data for statistics, written out from MATLAB

## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]
## Warning: Missing column names filled in: 'X26' [26]

Correct rejections (10 minutes)

## Joining, by = c("subnum", "X26")
## Joining, by = c("subnum", "X26")

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 924.033 417.848 44.228 0.000 * 0.586 0.689
time 7 140 17.375 70.812 4.907 0.000 * 0.026 0.197
region 2 40 70.503 130.765 10.783 0.000 * 0.098 0.350
time:region 14 280 1.396 32.831 0.851 0.613 0.002 0.041
Effect W p p<.05
2 time 0.013 0.000 *
3 region 0.964 0.709
4 time:region 0.000 0.057
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.435 0.004 * 0.521 0.002 *
3 region 0.966 0.000 * 1.067 0.000 *
4 time:region 0.495 0.547 0.785 0.590

Main effect of time on theta power: F(3.04, 60.85) = 4.91, p = .004, \(\eta^2_p\) = .20

Paired t-tests

region BF estimate statistic p.value parameter conf.low conf.high method alternative d
PO7P5P7 0.274 0.109 0.646 0.525 20 -0.242 0.459 Paired t-test two.sided 0.141
PO8P6P8 0.313 0.115 0.844 0.409 20 -0.169 0.399 Paired t-test two.sided 0.184
FCzFC1FC2 0.468 0.137 1.285 0.214 20 -0.085 0.359 Paired t-test two.sided 0.280
region BF
PO7P5P7 0.27
PO8P6P8 0.31
FCzFC1FC2 0.47
  • Difference in theta power between block 6 and 7 in left PO electrodes: t(20) = 0.65, p = .525, d = 0.14, BF01 = 3.64
  • Difference in theta power between block 6 and 7 in right PO electrodes: t(20) = 0.84, p = .409, d = 0.18, BF01 = 3.2
  • Difference in theta power between block 6 and 7 in MF electrodes: t(20) = 1.28, p = .214, d = 0.28, BF01 = 2.14

Hits and misses (20 minutes)

## Joining, by = c("subnum", "X26")
## Joining, by = c("subnum", "X26")

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 1375.376 291.044 94.513 0.000 * 0.655 0.825
time 3 60 15.207 73.126 4.159 0.010 * 0.021 0.172
region 2 40 59.714 165.422 7.220 0.002 * 0.076 0.265
condition 1 20 101.678 47.271 43.019 0.000 * 0.123 0.683
time:region 6 120 2.691 53.747 1.001 0.428 0.004 0.048
time:condition 3 60 1.722 33.237 1.036 0.383 0.002 0.049
region:condition 2 40 3.843 36.673 2.096 0.136 0.005 0.095
time:region:condition 6 120 0.694 25.228 0.550 0.769 0.001 0.027
Effect W p p<.05
2 time 0.760 0.400
3 region 0.925 0.476
5 time:region 0.136 0.019 *
6 time:condition 0.876 0.779
7 region:condition 0.660 0.019 *
8 time:region:condition 0.411 0.735
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.867 0.014 * 1.008 0.010 *
3 region 0.930 0.003 * 1.022 0.002 *
5 time:region 0.584 0.406 0.724 0.415
6 time:condition 0.928 0.380 1.093 0.383
7 region:condition 0.746 0.151 0.793 0.148
8 time:region:condition 0.769 0.724 1.028 0.769
  • Main effect of condition on theta power: F(1, 20) = 43.02, p < .001, \(\eta^2_p\) = .68
  • Theta power: time by condition interaction theta power: F(3, 60) = 1.04, p = .383, \(\eta^2_p\) = .05

ERPs - P1

Load the files with EEG data for statistics, written out from MATLAB

## Warning: Missing column names filled in: 'X18' [18]
## Warning: Missing column names filled in: 'X18' [18]
## Warning: Missing column names filled in: 'X18' [18]
## Warning: Missing column names filled in: 'X18' [18]

Correct rejections (10 minutes)

## Joining, by = c("subnum", "X18")

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 278.878349 142.91960 39.0259077 0.0000042 * 0.4745800 0.6611657
time 7 140 3.513505 60.35357 1.1643071 0.3271770 0.0112516 0.0550128
region 1 20 47.393079 72.52800 13.0689061 0.0017267 * 0.1330718 0.3952023
time:region 7 140 0.468308 32.95234 0.2842336 0.9592468 0.0015145 0.0140125
Effect W p p<.05
2 time 0.0545227 0.0043692 *
4 time:region 0.1801815 0.3314069
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.5264141 0.3326329 0.6600623 0.3325955
4 time:region 0.7198980 0.9218219 0.9914061 0.9584455
  • Main effect of time on P1: F(3.68, 73.70) = 1.16, p = .333, \(\eta^2_p\) = .06
  • Main effect of hemisphere on P1: F(1, 20) = 13.07, p = .002, \(\eta^2_p\) = .40

Paired t-tests

region BF estimate statistic p.value parameter conf.low conf.high method alternative d
PO7P5P7 0.496 -0.250 -1.338 0.196 20 -0.640 0.140 Paired t-test two.sided 0.292
PO8P6P8 0.963 -0.283 -1.854 0.079 20 -0.601 0.035 Paired t-test two.sided 0.405
region BF
PO7P5P7 0.50
PO8P6P8 0.96

Hits and misses (20 minutes)

## Joining, by = c("subnum", "X18")

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 260.018 159.027 32.701 0.000 * 0.344 0.621
time 3 60 3.865 85.910 0.900 0.447 0.008 0.043
region 1 20 35.928 52.503 13.686 0.001 * 0.067 0.406
condition 1 20 7.634 22.832 6.687 0.018 * 0.015 0.251
time:region 3 60 1.182 47.461 0.498 0.685 0.002 0.024
time:condition 3 60 0.871 53.399 0.326 0.806 0.002 0.016
region:condition 1 20 7.991 21.378 7.476 0.013 * 0.016 0.272
time:region:condition 3 60 1.434 54.184 0.529 0.664 0.003 0.026
Effect W p p<.05
2 time 0.523 0.033 *
5 time:region 0.726 0.308
6 time:condition 0.766 0.418
8 time:region:condition 0.710 0.270
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.709 0.420 0.796 0.429
5 time:region 0.858 0.657 0.996 0.684
6 time:condition 0.839 0.771 0.969 0.800
8 time:region:condition 0.841 0.634 0.972 0.659
  • P1 amplitude: region by condition interaction: F(1, 20) = 7.48, p = .013, \(\eta^2_p\) = .27
  • P1 amplitude: time by region by condition interaction: F(3, 60) = 0.53, p = .664, \(\eta^2_p\) = .03

ERPs - N1

Load the files with EEG data for statistics, written out from MATLAB

## Warning: Missing column names filled in: 'X18' [18]
## Warning: Missing column names filled in: 'X18' [18]
## Warning: Missing column names filled in: 'X18' [18]
## Warning: Missing column names filled in: 'X18' [18]

Correct rejections (10 minutes)

## Joining, by = c("subnum", "X18")

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 491.592 677.571 14.510 0.001 * 0.294 0.420
time 7 140 23.605 81.507 5.792 0.000 * 0.020 0.225
region 1 20 287.641 376.592 15.276 0.001 * 0.196 0.433
time:region 7 140 9.247 46.226 4.001 0.001 * 0.008 0.167
Effect W p p<.05
2 time 0.017 0.000 *
4 time:region 0.078 0.021 *
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.412 0.002 * 0.490 0.001 *
4 time:region 0.620 0.004 * 0.814 0.001 *
  • Main effect of time on N1: F(2.89, 57.75) = 5.79, p = .002, \(\eta^2_p\) = .22
  • Main effect of hemiphere on N1: F(1, 20) = 15.28, p < .001, \(\eta^2_p\) = .43

Paired t-tests

region BF estimate statistic p.value parameter conf.low conf.high method alternative d
PO7P5P7 0.290 0.126 0.734 0.472 20 -0.231 0.483 Paired t-test two.sided 0.160
PO8P6P8 0.239 -0.052 -0.334 0.742 20 -0.380 0.275 Paired t-test two.sided 0.073
region BF
PO7P5P7 0.29
PO8P6P8 0.24
  • Difference in N1 between block 6 and 7 in left PO regions: t(20) = 0.73, p = .472, d = 0.16, BF01 = 3.45
  • Difference in N1 between block 6 and 7 in right PO regions: t(20) = -0.33, p = .742, d = -0.07, BF01 = 4.18

Hits and misses (20 minutes)

## Joining, by = c("subnum", "X18")

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 609.706 607.240 20.081 0.000 * 0.299 0.501
time 3 60 9.817 86.333 2.274 0.089 0.007 0.102
region 1 20 362.837 347.975 20.854 0.000 * 0.203 0.510
condition 1 20 51.167 61.268 16.702 0.001 * 0.035 0.455
time:region 3 60 2.127 58.460 0.728 0.539 0.001 0.035
time:condition 3 60 1.840 106.349 0.346 0.792 0.001 0.017
region:condition 1 20 40.250 67.874 11.860 0.003 * 0.027 0.372
time:region:condition 3 60 7.896 92.973 1.699 0.177 0.005 0.078
Effect W p p<.05
2 time 0.811 0.560
5 time:region 0.940 0.949
6 time:condition 0.626 0.119
8 time:region:condition 0.859 0.725
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.892 0.097 1.042 0.089
5 time:region 0.963 0.535 1.143 0.539
6 time:condition 0.752 0.735 0.852 0.760
8 time:region:condition 0.912 0.182 1.071 0.177
  • N1 amplitude: hemisphere by condition interaction: F(1, 20) = 11.86, p = .003, \(\eta^2_p\) = .37
  • N1 amplitude: time by hemisphere by condition interaction: F(3, 60) = 1.70, p = .177, \(\eta^2_p\) = .08

Power lateralization - Alpha

Load the files with EEG data for statistics, written out from MATLAB

## Warning: Missing column names filled in: 'X10' [10]
## Warning: Missing column names filled in: 'X10' [10]

Correct rejections (10 minutes)

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 0.820 4.186 3.916 0.062 0.157 0.164
time 7 140 0.011 0.231 0.938 0.479 0.002 0.045
Effect W p p<.05
2 time 0.029 0 *
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.503 0.438 0.624 0.452

Main effect of time on alpha lateralization: F(3.52, 70.42) = 0.94, p = .438, \(\eta^2_p\) = .04

Paired t-tests

6 vs. 7:

region BF estimate statistic p.value parameter conf.low conf.high method alternative d
PO8P6P8 0.229 0.001 0.101 0.92 20 -0.022 0.024 Paired t-test two.sided 0.022
region BF
PO8P6P8 0.23

Difference in alpha lateralization between block 6 and 7: t(20) = 0.10, p = .920, d = 0.02, BF01 = 4.38

Hits and misses (20 minutes)

RM ANOVA

Effect DFn DFd SSn SSd F p p<.05 ges pes
(Intercept) 1 20 0.862 4.273 4.035 0.058 0.153 0.168
time 3 60 0.004 0.272 0.283 0.838 0.001 0.014
condition 1 20 0.048 0.076 12.676 0.002 * 0.010 0.388
time:condition 3 60 0.004 0.169 0.465 0.708 0.001 0.023
Effect W p p<.05
2 time 0.782 0.468
4 time:condition 0.848 0.688
Effect GGe p[GG] p[GG]<.05 HFe p[HF] p[HF]<.05
2 time 0.868 0.810 1.009 0.838
4 time:condition 0.893 0.687 1.044 0.708
  • Main effect of condition on alpha lateralization: F(1, 20) = 12.68, p = .002, \(\eta^2_p\) = .39
  • time by condition interaction alpha lateralization: F(3, 60) = 0.46, p = .708, \(\eta^2_p\) = .02